A087510 Primes consisting only of digits 0 and 1 occurring with equal frequency.
10010101, 10100011, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001, 1011000101, 1100001101, 1101001001, 10000101011101, 10000111100011, 10000111110001, 10001000011111, 10001001011011
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..18167 (first 1000 terms from T. D. Noe)
Crossrefs
Primes in A071925.
The 18 sequences in this family are: this sequence (1,0), A087511 (1,3), A087512 (1,4), A087513 (1,6), A087514 (1,7), A087515 (1,9), A087527 (2,3), A087528 (2,9), A087529 (3,4), A087530 (3,5), A087531 (3,7), A087532 (3,8), A087533 (4,7), A087534 (4,9), A087535 (5,9), A087536 (6,7), A087537 (7,9), A087538 (8,9).
Programs
-
Mathematica
Select[FromDigits/@Tuples[{0,1},14],PrimeQ[#] && Length[x=IntegerDigits[#]]==2*Count[x,0] &] (* Jayanta Basu, May 23 2013 *)
-
PARI
\\ B(k,d1,d2,pred) k-digits of (d1,d2) each, satisfying pred. B(k,d1,d2,pred)={my(L=List(),m=10^(2*k-1)); forsubset([2*k,k], s, my(t=(10^(2*k)-1)/9*d1 + (d2-d1)*sum(i=1, #s, 10^(s[i]-1))); if(t>=m && pred(t), listput(L,t))); vecsort(Vec(L))} { concat(vector(7,k,B(k,0,1,isprime)))[1..20] } \\ Andrew Howroyd, Sep 20 2024
Comments