A087640 To obtain a(n+1), take the square of the n-th partial sum, minus the sum of the first n squared terms, then divide this difference by a(n); for all n>1, starting with a(0)=1, a(1)=1.
1, 1, 2, 5, 10, 23, 48, 107, 228, 501, 1078, 2353, 5086, 11067, 23972, 52087, 112936, 245225, 531946, 1154685, 2505298, 5437407, 11798616, 25605539, 55563980, 120581981, 261668382, 567850345, 1232273510, 2674156163, 5803126348
Offset: 0
Keywords
Links
- Sean A. Irvine, Walks on Graphs
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1).
Crossrefs
Cf. A052973.
Programs
-
Mathematica
CoefficientList[Series[(1-2x^2+x^3)/(1-x-3x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,-1},{1,1,2,5},40] (* Harvey P. Dale, Dec 06 2015 *)
-
PARI
{a(n) = if(n<=1,1,( sum(k=0, n-1, a(k))^2 - sum(k=0, n-1, a(k)^2) )/a(n-1))} for(n=0,40,print1(a(n),", "))
Formula
a(n) = a(n-1) + 3a(n-2) - a(n-3) for n>3.
G.f.: (1-2x^2+x^3)/(1-x-3x^2+x^3).
G.f.: A052973(x)/(1+x-x^2).
Comments