cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087640 To obtain a(n+1), take the square of the n-th partial sum, minus the sum of the first n squared terms, then divide this difference by a(n); for all n>1, starting with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 48, 107, 228, 501, 1078, 2353, 5086, 11067, 23972, 52087, 112936, 245225, 531946, 1154685, 2505298, 5437407, 11798616, 25605539, 55563980, 120581981, 261668382, 567850345, 1232273510, 2674156163, 5803126348
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2003

Keywords

Comments

For n > 0, a(n) counts the number of walks of length n-1 starting at vertex A in the undirected graph with edge set {(A, B), (A, C), (B, C), (C, D)}. - Noah Niederklein, Jun 07 2025

Crossrefs

Cf. A052973.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x^2+x^3)/(1-x-3x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,-1},{1,1,2,5},40] (* Harvey P. Dale, Dec 06 2015 *)
  • PARI
    {a(n) = if(n<=1,1,( sum(k=0, n-1, a(k))^2 - sum(k=0, n-1, a(k)^2) )/a(n-1))}
    for(n=0,40,print1(a(n),", "))

Formula

a(n) = a(n-1) + 3a(n-2) - a(n-3) for n>3.
G.f.: (1-2x^2+x^3)/(1-x-3x^2+x^3).
G.f.: A052973(x)/(1+x-x^2).