A087659 a(n) = hypergeom([ -n, (n+4)/2, (n+5)/2], [3, 2], -4).
1, 6, 57, 701, 10147, 164317, 2888282, 54047434, 1062530119, 21739192762, 459685114665, 9993072855135, 222421656113435, 5052215132332492, 116808526607319823, 2742986603349411311, 65306671610636210891, 1574090246599071243962, 38361262640988126803839
Offset: 0
Keywords
Programs
-
Mathematica
a[n_] := HypergeometricPFQ[{-n, (n + 4)/2, (n + 5)/2}, {3, 2}, -4]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 19 2018 *)
-
PARI
a(n)= sum(i=0,n,2*binomial(n,i)*(n+2*i+3)!/((i+1)!*(i+2)!*(n+3)!)) \\ Benoit Cloitre
-
Sage
def A087659(): x, y, z, n = 1, 6, 57, 2 while True: yield x n += 1 x, y, z = y, z, ((n-1)*(n-2)*(n-3)*(3*n+2)*x-(n-1)*(9*n^3-3*n^2-4*n-4)*y+(2*(3*n+1))*(n+2)*(15*n^2+5*n-2)*z)/((n+3)*(3*n-1)*(n+2)^2) a = A087659() [next(a) for i in range(19)] # Peter Luschny, Oct 12 2013
Formula
a(n) = Sum _{i=0..n} 2*C(n,i) * (n+2*i+3)! / ( (i+1)! * (i+2)! * (n+3)! ).
From Vaclav Kotesovec, Jul 05 2018: (Start)
D-finite with Recurrence: (n+2)^2*(n+3)*(3*n - 1)*a(n) = 2*(n+2)*(3*n + 1)*(15*n^2 + 5*n - 2)*a(n-1) - (n-1)*(9*n^3 - 3*n^2 - 4*n - 4)*a(n-2) + (n-3)*(n-2)*(n-1)*(3*n + 2)*a(n-3).
a(n) ~ sqrt(957 + 1/3*(5/2*(9465769685 - 18403*sqrt(5)))^(1/3) + 1/3*(5/2*(9465769685 + 18403*sqrt(5)))^(1/3)) * (66 + 10*2^(2/3)*(73 + sqrt(5))^(1/3) + 3*2^(1/3)*(73 + sqrt(5))^(2/3))^n / (Pi * n^4 * 2^(2*n/3) * (73 + sqrt(5))^(n/3)). (End)
Extensions
More terms from Benoit Cloitre, Sep 26 2003
Comments