cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087694 Number of solutions to x^2 + xy + y^2 == 0 (mod n).

Original entry on oeis.org

1, 1, 3, 4, 1, 3, 13, 4, 9, 1, 1, 12, 25, 13, 3, 16, 1, 9, 37, 4, 39, 1, 1, 12, 25, 25, 27, 52, 1, 3, 61, 16, 3, 1, 13, 36, 73, 37, 75, 4, 1, 39, 85, 4, 9, 1, 1, 48, 133, 25, 3, 100, 1, 27, 1, 52, 111, 1, 1, 12, 121, 61, 117, 64, 25, 3, 133, 4, 3, 13
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 27 2003

Keywords

Crossrefs

Programs

  • Maple
    A087694 := proc(n) option remember; local pf,p,f,e ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then f := op(1,pf) ; p := op(1,f) ; e := op(2,f) ; if p = 3 then n ; elif p mod 3 =1 then ((p-1)*e+p)*p^(e-1) ; else p^(2*floor(e/2)) ; end if; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc:
    seq(A087694(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[n_] := If[n==1, 1, Product[{p, e} = pe; Which[p==3, 3^e, Mod[p, 3] == 2, (p^2)^Quotient[e, 2], True, ((p-1) e + p) p^(e-1)], {pe, FactorInteger[n] }]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==3, 3^e, if(p%3==2, (p^2)^(e\2), ((p-1)*e+p)*p^(e-1))))} \\ Andrew Howroyd, Jul 09 2018

Formula

Multiplicative with a(3^e) = 3^e, a(p^e) = ((p-1)*e+p)*p^(e-1) if p mod 3 = 1, a(p^e) = p^(2*floor(e/2)) if p mod 3 = 2. - Vladeta Jovovic, Sep 27 2003
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A073010/A086724 = 0.77383581325017004332... . - Amiram Eldar, Nov 21 2023