A087694 Number of solutions to x^2 + xy + y^2 == 0 (mod n).
1, 1, 3, 4, 1, 3, 13, 4, 9, 1, 1, 12, 25, 13, 3, 16, 1, 9, 37, 4, 39, 1, 1, 12, 25, 25, 27, 52, 1, 3, 61, 16, 3, 1, 13, 36, 73, 37, 75, 4, 1, 39, 85, 4, 9, 1, 1, 48, 133, 25, 3, 100, 1, 27, 1, 52, 111, 1, 1, 12, 121, 61, 117, 64, 25, 3, 133, 4, 3, 13
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A087694 := proc(n) option remember; local pf,p,f,e ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then f := op(1,pf) ; p := op(1,f) ; e := op(2,f) ; if p = 3 then n ; elif p mod 3 =1 then ((p-1)*e+p)*p^(e-1) ; else p^(2*floor(e/2)) ; end if; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc: seq(A087694(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
-
Mathematica
a[n_] := If[n==1, 1, Product[{p, e} = pe; Which[p==3, 3^e, Mod[p, 3] == 2, (p^2)^Quotient[e, 2], True, ((p-1) e + p) p^(e-1)], {pe, FactorInteger[n] }]]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==3, 3^e, if(p%3==2, (p^2)^(e\2), ((p-1)*e+p)*p^(e-1))))} \\ Andrew Howroyd, Jul 09 2018
Formula
Multiplicative with a(3^e) = 3^e, a(p^e) = ((p-1)*e+p)*p^(e-1) if p mod 3 = 1, a(p^e) = p^(2*floor(e/2)) if p mod 3 = 2. - Vladeta Jovovic, Sep 27 2003
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A073010/A086724 = 0.77383581325017004332... . - Amiram Eldar, Nov 21 2023