A087718 Semiprimes with greater factor less than twice the smaller factor.
4, 6, 9, 15, 25, 35, 49, 77, 91, 121, 143, 169, 187, 209, 221, 247, 289, 299, 323, 361, 391, 437, 493, 527, 529, 551, 589, 667, 703, 713, 841, 851, 899, 943, 961, 989, 1073, 1147, 1189, 1247, 1271, 1333, 1363, 1369, 1457, 1517, 1537, 1591, 1643, 1681
Offset: 1
Keywords
Examples
35=5*7 is a term, as 7<5*2=10; 21=3*7 is not a term, as 7>3*2=6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Andreas Decker and Pieter Moree, Counting RSA-integers, Results in Mathematics 52 (2008), pp. 35-39.
- Eric Weisstein's World of Mathematics, Semiprime
Crossrefs
Cf. A001358.
Programs
-
Mathematica
Select[Range[1700],PrimeOmega[#]==2&&(IntegerQ[Sqrt[#]]|| FactorInteger[ #] [[-1,1]] < 2*FactorInteger[#][[1,1]])&] (* Harvey P. Dale, Sep 12 2017 *)
-
PARI
list(lim)=my(v=List()); forprime(p=2, sqrtint(lim\2), forprime(q=2, min(lim\p,2*p), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Jul 07 2016
Formula
a(n) ~ kx log^2 x with k = 1/log 4 = 0.7213..., see Decker & Moree. - Charles R Greathouse IV, Jul 07 2016
Comments