A087726 Number of elements X in the matrix ring M_2(Z_n) such that X^2 == 0 mod n.
1, 4, 9, 28, 25, 36, 49, 112, 153, 100, 121, 252, 169, 196, 225, 640, 289, 612, 361, 700, 441, 484, 529, 1008, 1225, 676, 1377, 1372, 841, 900, 961, 2560, 1089, 1156, 1225, 4284, 1369, 1444, 1521, 2800, 1681, 1764, 1849, 3388, 3825, 2116, 2209, 5760, 4753, 4900, 2601, 4732
Offset: 1
Links
- Manfred Scheucher, Table of n, a(n) for n = 1..1000
- Manfred Scheucher, A proof of the formula for k=1
Programs
-
C
#include
#include int main(int argc,char** argv) { long ct = 0; int n = atoi(argv[1]); int a,b,c,d; for(a=0;a Manfred Scheucher, Jun 09 2015 */ -
Maple
f:= proc(n) local tot, S, a, mult, sa, d, ad, g, cands; tot:= 0; S:= ListTools:-Classify(t -> t^2 mod n, [$0..n-1]); for a in numtheory:-divisors(n) do mult:= numtheory:-phi(n/a); sa:= a^2 mod n; for d in S[sa] do g:= igcd(a+d,n); cands:= [seq(i*n/g, i=0..g-1)]; tot:= tot + mult * numboccur(sa,[seq(seq(s*t,s=cands),t=cands)] mod n); od od; tot end proc: map(f, [$1..100]); # Robert Israel, Jun 09 2015
-
Mathematica
a[m_] := Count[Table[Mod[MatrixPower[Partition[IntegerDigits[n, m, 4], 2], 2], m] == {{0, 0}, {0, 0}}, {n, 0, m^4 - 1}], True]; Table[a[n], {n,2,30}] (* Ben Branman, Mar 22 2013 *)
Extensions
More terms from Ben Branman, Mar 22 2013
More terms from Manfred Scheucher, Jun 09 2015
Comments