A087782 a(n) = number of solutions to x^3 + x == 0 (mod n).
1, 2, 1, 1, 3, 2, 1, 1, 1, 6, 1, 1, 3, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 1, 3, 6, 1, 1, 3, 6, 1, 1, 1, 6, 3, 1, 3, 2, 3, 3, 3, 2, 1, 1, 3, 2, 1, 1, 1, 6, 3, 3, 3, 2, 3, 1, 1, 6, 1, 3, 3, 2, 1, 1, 9, 2, 1, 3, 1, 6, 1, 1, 3, 6, 3, 1, 1, 6, 1, 3, 1, 6, 1, 1, 9, 2, 3, 1, 3, 6, 3, 1, 1, 2, 3, 1, 3, 2, 1, 3, 3, 6, 1, 3, 3
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
- N. J. A. Sloane, Transforms.
Programs
-
Mathematica
a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[p == 2, If[e == 1, 2, 1], If[Mod[p, 4] == 1, 3, 1]], {pe, FactorInteger[n]}]]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
-
PARI
a(n)={my(v=vector(n)); sum(i=0, n-1, lift(Mod(i,n)^3 + i) == 0)} \\ Andrew Howroyd, Jul 15 2018
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, if(e==1, 2, 1), if(p%4==1, 3, 1)))} \\ Andrew Howroyd, Jul 15 2018
Formula
Multiplicative with a(2^1) = 2, a(2^e) = 1 for e > 1, a(p^e) = 3 for p mod 4 == 1, a(p^e) = 1 for p mod 4 == 3. - Andrew Howroyd, Jul 15 2018
Extensions
More terms from David Wasserman, Jun 17 2005
Comments