A087786 a(n) = number of solutions to x^3 - y^3 == 0 (mod n).
1, 2, 3, 6, 5, 6, 19, 20, 27, 10, 11, 18, 37, 38, 15, 40, 17, 54, 55, 30, 57, 22, 23, 60, 45, 74, 135, 114, 29, 30, 91, 112, 33, 34, 95, 162, 109, 110, 111, 100, 41, 114, 127, 66, 135, 46, 47, 120, 175, 90, 51, 222, 53, 270, 55, 380, 165, 58, 59, 90, 181, 182, 513, 352, 185
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
PARI
a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]^2)} \\ Andrew Howroyd, Jul 17 2018
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(2*(2*e\3)) + sum(i=0, (e-1)\3, if(p%3==1 || (p==3&&3*i
Andrew Howroyd, Jul 17 2018
Formula
Multiplicative with a(p^e) = p^(2*floor(2*e/3)) + Sum_{i=0..floor((e-1)/3)} k*(p-1)*p^(e+i-1) where k = 3 if (p = 3 and 3*i+1 = e) or (p mod 3 = 1) otherwise k = 1. - Andrew Howroyd, Jul 17 2018
Extensions
More terms from John W. Layman, Oct 18 2003