cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A046530 Number of distinct cubic residues mod n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 3, 5, 3, 10, 11, 9, 5, 6, 15, 10, 17, 6, 7, 15, 9, 22, 23, 15, 21, 10, 7, 9, 29, 30, 11, 19, 33, 34, 15, 9, 13, 14, 15, 25, 41, 18, 15, 33, 15, 46, 47, 30, 15, 42, 51, 15, 53, 14, 55, 15, 21, 58, 59, 45, 21, 22, 9, 37, 25, 66, 23, 51, 69, 30, 71, 15, 25, 26, 63
Offset: 1

Views

Author

Keywords

Comments

In other words, number of distinct cubes mod n. - N. J. A. Sloane, Oct 05 2024
Cubic analog of A000224. - Steven Finch, Mar 01 2006
A074243 contains values of n such that a(n) = n. - Dmitri Kamenetsky, Nov 03 2012

Crossrefs

For number of k-th power residues mod n, see A000224 (k=2), A052273 (k=4), A052274 (k=5), A052275 (k=6), A085310 (k=7), A085311 (k=8), A085312 (k=9), A085313 (k=10), A085314 (k=12), A228849 (k=13).

Programs

  • Haskell
    import Data.List (nub)
    a046530 n = length $ nub $ map (`mod` n) $
                               take (fromInteger n) $ tail a000578_list
    -- Reinhard Zumkeller, Aug 01 2012
    
  • Maple
    A046530 := proc(n)
            local a,pf ;
            a := 1 ;
            if n = 1 then
                    return 1;
            end if;
            for i in  ifactors(n)[2] do
                    p := op(1,i) ;
                    e := op(2,i) ;
                    if p = 3 then
                            if e mod 3 = 0 then
                                    a := a*(3^(e+1)+10)/13 ;
                            elif e mod 3 = 1 then
                                    a := a*(3^(e+1)+30)/13 ;
                            else
                                    a := a*(3^(e+1)+12)/13 ;
                            end if;
                    elif p mod 3 = 2 then
                            if e mod 3 = 0 then
                                    a := a*(p^(e+2)+p+1)/(p^2+p+1) ;
                            elif e mod 3 = 1 then
                                    a := a*(p^(e+2)+p^2+p)/(p^2+p+1) ;
                            else
                                    a := a*(p^(e+2)+p^2+1)/(p^2+p+1) ;
                            end if;
                    else
                            if e mod 3 = 0 then
                                    a := a*(p^(e+2)+2*p^2+3*p+3)/3/(p^2+p+1) ;
                            elif e mod 3 = 1 then
                                    a := a*(p^(e+2)+3*p^2+3*p+2)/3/(p^2+p+1) ;
                            else
                                    a := a*(p^(e+2)+3*p^2+2*p+3)/3/(p^2+p+1) ;
                            end if;
                    end if;
            end do:
            a ;
    end proc:
    seq(A046530(n),n=1..40) ; # R. J. Mathar, Nov 01 2011
  • Mathematica
    Length[Union[#]]& /@ Table[Mod[k^3, n], {n, 75}, {k, n}] (* Jean-François Alcover, Aug 30 2011 *)
    Length[Union[#]]&/@Table[PowerMod[k,3,n],{n,80},{k,n}] (* Harvey P. Dale, Aug 12 2015 *)
  • PARI
    g(p,e)=if(p==3,(3^(e+1)+if(e%3==1,30,if(e%3,12,10)))/13, if(p%3==2, (p^(e+2)+if(e%3==1,p^2+p,if(e%3,p^2+1,p+1)))/(p^2+p+1),(p^(e+2)+if(e%3==1,3*p^2+3*p+2, if(e%3,3*p^2+2*p+3,2*p^2+3*p+3)))/3/(p^2+p+1)))
    a(n)=my(f=factor(n));prod(i=1,#f[,1],g(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jan 03 2013
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); 1 + sum(i=0, (e-1)\3, if(p%3==1 || (p==3&&3*iAndrew Howroyd, Jul 17 2018

Formula

a(n) = n - A257301(n). - Stanislav Sykora, Apr 21 2015
a(2^n) = A046630(n). a(3^n) = A046631(n). a(5^n) = A046633(n). a(7^n) = A046635(n). - R. J. Mathar, Sep 28 2017
Multiplicative with a(p^e) = 1 + Sum_{i=0..floor((e-1)/3)} (p - 1)*p^(e-3*i-1)/k where k = 3 if (p = 3 and 3*i + 1 = e) or (p mod 3 = 1) otherwise k = 1. - Andrew Howroyd, Jul 17 2018
Sum_{k=1..n} a(k) ~ c * n^2/log(n)^(1/3), where c = (6/(13*Gamma(2/3))) * (2/3)^(-1/3) * Product_{p prime == 2 (mod 3)} (1 - (p^2+1)/((p^2+p+1)*(p^2-p+1)*(p+1))) * (1-1/p)^(-1/3) * Product_{p prime == 1 (mod 3)} (1 - (2*p^4+3*p^2+3)/(3*(p^2+p+1)*(p^2-p+1)*(p+1))) * (1-1/p)^(-1/3) = 0.48487418844474389597... (Finch and Sebah, 2006). - Amiram Eldar, Oct 18 2022

A376203 a(n) = A376202(2*n-1)/2.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 0, 0, 9, 6, 0, 0, 0, 0, 15, 0, 0, 18, 12, 0, 21, 0, 0, 21, 0, 0, 0, 18, 0, 30, 0, 0, 33, 0, 0, 36, 0, 0, 39, 0, 0, 0, 0, 0, 72, 30, 0, 48, 0, 0, 51, 0, 0, 54, 36, 0, 0, 0, 0, 0, 0, 0, 63, 42, 0, 108, 0, 0, 69
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376203(n):
        c, m = 0, (n<<1)-1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c>>1 # Chai Wah Wu, Oct 06 2024

A376755 a(n) = A376202(6*n+1)/6.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, 7, 0, 10, 11, 12, 13, 0, 24, 16, 17, 18, 0, 0, 21, 36, 23, 0, 25, 26, 27, 26, 0, 30, 0, 32, 33, 0, 35, 60, 37, 38, 0, 40, 72, 0, 72, 0, 45, 46, 47, 0, 0, 84, 51, 52, 0, 0, 55, 56, 49, 58, 0, 57, 61, 62, 63, 0, 0, 66, 120, 68, 0, 70, 120, 72
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376755(n):
        c, m = 0, 6*n|1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c//6 # Chai Wah Wu, Oct 06 2024

Extensions

a(51)-a(72) from Chai Wah Wu, Oct 06 2024

A376756 Number of pairs 0 <= x <= y <= n-1 such that x^2 + x*y + y^2 == 0 (mod n).

Original entry on oeis.org

1, 1, 3, 3, 1, 3, 7, 3, 6, 1, 1, 9, 13, 7, 3, 10, 1, 6, 19, 3, 21, 1, 1, 9, 15, 13, 18, 27, 1, 3, 31, 10, 3, 1, 7, 21, 37, 19, 39, 3, 1, 21, 43, 3, 6, 1, 1, 30, 70, 15, 3, 51, 1, 18, 1, 27, 57, 1, 1, 9, 61, 31, 60, 36, 13, 3, 67, 3, 3, 7, 1, 21, 73, 37, 45, 75, 7, 39, 79, 10, 45, 1, 1, 81, 1, 43, 3, 3, 1, 6, 163, 3, 93, 1, 19, 30, 97
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    def A376756(n):
        c = 0
        for x in range(n):
            z = x**2%n
            for y in range(x,n):
                if not (z+y*(x+y))%n:
                    c += 1
        return c # Chai Wah Wu, Oct 06 2024

A376757 Number of pairs 0 <= x <= y <= n-1 such that x^3 == y^3 (mod n).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 13, 14, 18, 10, 11, 15, 25, 26, 15, 28, 17, 36, 37, 25, 39, 22, 23, 42, 35, 50, 81, 71, 29, 30, 61, 72, 33, 34, 65, 99, 73, 74, 75, 70, 41, 78, 85, 55, 90, 46, 47, 84, 112, 70, 51, 137, 53, 162, 55, 218, 111, 58, 59, 75, 121, 122, 288, 208, 125, 66, 133, 85, 69, 130, 71, 306, 145, 146, 105, 203, 143, 150, 157
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Comments

A087786 includes pairs (x,y) with x>y (which are excluded from the present sequence).

Crossrefs

Programs

  • PARI
    a(n) = sum(x=0, n-1, sum(y=x, n-1, Mod(x, n)^3 == Mod(y, n)^3)); \\ Michel Marcus, Oct 06 2024
    
  • Python
    from collections import Counter
    def A376757(n): return sum(d*(d+1)>>1 for d in Counter(pow(x,3,n) for x in range(n)).values()) # Chai Wah Wu, Oct 06 2024

A087412 a(n) is the number of solutions to x^3 + y^3 == 1 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 8, 18, 10, 11, 12, 6, 12, 15, 16, 17, 36, 24, 20, 18, 22, 23, 24, 25, 12, 54, 24, 29, 30, 33, 32, 33, 34, 30, 72, 24, 48, 18, 40, 41, 36, 33, 44, 90, 46, 47, 48, 42, 50, 51, 24, 53, 108, 55, 48, 72, 58, 59, 60
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 21 2003

Keywords

Crossrefs

Cf. A087786.

Programs

  • Mathematica
    a[n_] := Module[{v = Table[0, {n}]}, For[i = 0, i <= n-1, i++, v[[Mod[i^3, n] + 1]]++]; Sum[v[[i+1]] v[[Mod[1-i, n] + 1]], {i, 0, n-1}]];
    a /@ Range[1, 60] (* Jean-François Alcover, Sep 17 2019, after Andrew Howroyd *)
  • PARI
    a(n) = {nb = 0; for (x = 0, n-1, for (y = 0, n-1, if (Mod(x^3,n) + Mod(y^3,n) == Mod(1, n), nb++););); nb;} \\ Michel Marcus, Aug 06 2013
    
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]*v[(1-i)%n + 1])} \\ Andrew Howroyd, Jul 17 2018

Formula

From Andrew Howroyd, Jul 17 2018: (Start)
a(p^e) = p^e for p prime and p mod 3 = 2.
Conjecture: a(3^e) = 2*3^e for e > 1.
a(p^e) = p^(e-1)*(p - 1 + Sum_{b=1..p-1} Legendre(12*b^(-1) - 3*b^2, p)) for p prime and p <> 3.
The final formula arises from factoring x^3 + y^3 as (x + y)*(x*2 - x*y + y^2), then substituting b = x + y and counting the solutions to the resulting quadratic equation 3*x^2 - 3*b*x + b^2 == b^(-1) (mod p) for each nonzero value of b. (End)

Extensions

More terms from Michel Marcus, Aug 06 2013

A137401 a(n) is the number of ordered solutions (x,y,z) to x^3 + y^3 == z^3 mod n with 1 <= x,y,z <= n-1.

Original entry on oeis.org

0, 0, 2, 7, 12, 20, 0, 63, 116, 72, 90, 131, 0, 108, 182, 339, 240, 602, 324, 415, 326, 420, 462, 839, 604, 216, 1808, 763, 756, 812, 810, 1735, 992, 1056, 1092, 3311, 648, 1620, 650, 2511, 1560, 1640, 1134, 2227, 4328, 1980, 2070, 3683, 2484, 2644, 2450, 1519
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Apr 11 2008

Keywords

Comments

Record values of A137401: 0, 2, 7, 12, 20, 63, 116, 131, 182, 339, 602, 839, 1808, 3311, 4328, 7964, 8864, 9231, 19583, 21986, 41363, 52676, 81467, 87596, 92087, 112616, 236951, 247940, 378071, 386423, 521135, ... - Robert G. Wilson v

Examples

			a(4)=7 because (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 3), (3, 1, 2), (3, 2, 3) are solutions for n=4.
		

Crossrefs

Cf. A063454.

Programs

  • Mathematica
    f[n_] := Block[ {c = 0}, Do[ If[ Mod[x^3 + y^3, n] == Mod[z^3, n], c++ ], {x, n - 1}, {y, n - 1}, {z, n - 1}]; c];
    Table[Length[Select[Tuples[Range[n - 1], 3], Mod[ #[[1]]^3 + #[[2]]^3 - #[[3]]^3, n] == 0 &]], {n, 2, 50}] (* Stefan Steinerberger, Apr 12 2008 *)
  • Python
    def A137401(n):
        ndict = {}
        for i in range(1,n):
            m = pow(i,3,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 06 2017

Formula

a(n) = A063454(n)-3*A087786(n)+3*A000189(n)-1. - Vladeta Jovovic, Apr 11 2008

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Apr 12 2008

A276919 Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) = n^3 for n in A088232. See also A066498. - Michel Marcus, Oct 11 2016

Crossrefs

Programs

  • Mathematica
    JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
  • PARI
    a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
    a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
    
  • Python
    def A276919(n):
        ndict = {}
        for i in range(n):
            i3 = pow(i,3,n)
            for j in range(i+1):
                j3 = pow(j,3,n)
                m = (i3+j3) % n
                if m in ndict:
                    if i == j:
                        ndict[m] += 1
                    else:
                        ndict[m] += 2
                else:
                    if i == j:
                        ndict[m] = 1
                    else:
                        ndict[m] = 2
        count = 0
        for i in ndict:
            j = (1-i) % n
            if j in ndict:
                count += ndict[i]*ndict[j]
        return count # Chai Wah Wu, Jun 06 2017

A276920 Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.

Original entry on oeis.org

1, 8, 27, 72, 125, 216, 595, 704, 1539, 1000, 1331, 1944, 3133, 4760, 3375, 5632, 4913, 12312, 8911, 9000, 16065, 10648, 12167, 19008, 16125, 25064, 45927, 42840, 24389, 27000, 35371, 47104, 35937, 39304, 74375, 110808, 58645, 71288, 84591, 88000
Offset: 1

Views

Author

Keywords

Comments

a(n) = n^3 if n is in A074243. - Robert Israel, Oct 13 2016

Examples

			For n = 3, we see that all nondecreasing solutions {x, y, z, t} are in {{1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 3, 3}, {2, 2, 2, 3}, {3, 3, 3, 3}}. The numbers in the sets can be ordered in 4, 6, 12, 4 and 1 ways respectively. Therefore, a(3) = 4 + 6 + 12 + 4 + 1 = 27. - _David A. Corneth_, Oct 11 2016
		

Crossrefs

Programs

  • Maple
    CF:= table([[false, false, true] = 12, [true, false, false] = 12, [true, false, true] = 6, [false, false, false] = 24, [true, true, true] = 1, [false, true, true] = 4, [false, true, false] = 12, [true, true, false] = 4]):
    f1:= proc(n)
      option remember;
      local count, t, x,y,z,signature;
      if isprime(n) and n mod 3 = 2 then return n^3 fi;
      count:= 0;
      for t from 1 to n do
        for x from 1 to t do
          for y from 1 to x do
            for z from 1 to y do
              if t^3 + x^3 + y^3 + z^3 mod n = 0 then
                signature:= map(evalb,[z=y,y=x,x=t]);
                count:= count + CF[signature];
              fi
      od od od od;
      count
    end proc:
    f:= proc(n) local t;
        mul(f1(t[1]^t[2]),t=ifactors(n)[2])
    end proc:
    map(f, [$1..40]); # Robert Israel, Oct 13 2016
  • Mathematica
    JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 0], {n, 1, 50}]
  • PARI
    a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 0)))); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1);t=0));r*=binomial(#v,t+1)}
    a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1,4,Mod(v[i],n)^3)==0, t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
    
  • Python
    def A276920(n):
        ndict = {}
        for i in range(n):
            i3 = pow(i,3,n)
            for j in range(i+1):
                j3 = pow(j,3,n)
                m = (i3+j3) % n
                if m in ndict:
                    if i == j:
                        ndict[m] += 1
                    else:
                        ndict[m] += 2
                else:
                    if i == j:
                        ndict[m] = 1
                    else:
                        ndict[m] = 2
        count = 0
        for i in ndict:
            j = (-i) % n
            if j in ndict:
                count += ndict[i]*ndict[j]
        return count # Chai Wah Wu, Jun 06 2017
Showing 1-9 of 9 results.