cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276919 Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) = n^3 for n in A088232. See also A066498. - Michel Marcus, Oct 11 2016

Crossrefs

Programs

  • Mathematica
    JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
  • PARI
    a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
    a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
    
  • Python
    def A276919(n):
        ndict = {}
        for i in range(n):
            i3 = pow(i,3,n)
            for j in range(i+1):
                j3 = pow(j,3,n)
                m = (i3+j3) % n
                if m in ndict:
                    if i == j:
                        ndict[m] += 1
                    else:
                        ndict[m] += 2
                else:
                    if i == j:
                        ndict[m] = 1
                    else:
                        ndict[m] = 2
        count = 0
        for i in ndict:
            j = (1-i) % n
            if j in ndict:
                count += ndict[i]*ndict[j]
        return count # Chai Wah Wu, Jun 06 2017
Showing 1-1 of 1 results.