cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087809 Number of triangulations (by Euclidean triangles) having 3+3n vertices of a triangle with each side subdivided by n additional points.

Original entry on oeis.org

1, 4, 29, 229, 1847, 14974, 121430, 983476, 7952111, 64193728, 517447289, 4165721377, 33500374796, 269166095800, 2161064409680, 17339917293304, 139060729285871, 1114752741216196, 8933074352513183, 71564554425680839, 573180368696547407, 4589853880027965526, 36748143844815661298, 294180007538192738464
Offset: 0

Views

Author

Roland Bacher, Oct 16 2003

Keywords

Examples

			a(0)=1 since there is only one triangulation of a triangle (consisting of the triangle itself).
The a(1)=4 triangulations of a triangle with each side subdivided by one additional point are given by
.
       O             O
      / \           /|\
     O _ O         O   O
    / \ / \       / \|/ \
   O _ O _ O  ,  O _ O _ O
.
and rotations by 120 degrees and 240 degrees of the last triangulation.
		

Programs

  • Mathematica
    max = 19; f[x_] := Sum[ a[n]*x^n, {n, 0, max}]; a[0] = 1; g[x_] := Sum[ b[n]*x^n, {n, 0, max}]; b[0] = 0; coes = CoefficientList[ Series[ g[x]*(1 - g[x])^2 - x, {x, 0, max}], x]; solb = Solve[ Thread[ coes == 0]][[1]]; coes = CoefficientList[ Series[ f[x] - ((10*g[x]^3 - 17*g[x]^2 + 7*g[x] - 1)/((1 - 3*g[x])*(2*g[x] - 1)*(4*g[x]^2 - 6*g[x] + 1))), {x, 0, max}], x] /. solb; sola = Solve[ Thread[ coes == 0]][[1]]; Table[a[n] /. sola, {n, 0, max}] (* Jean-François Alcover, Dec 06 2011, after Mark van Hoeij *)
  • PARI
    list(lim=20)={my(a=List([1, 4])); for(m=3,lim,my(x=a[#a],y=a[#a-1],n=m-1,q=2*n*(2*n-1)*(5*n^2-29*n+30),z=(-295*n^4+1926*n^3-3425*n^2+2106*n-360)*x+24*(3*n-4)*(3*n-5)*(5*n^2-19*n+6)*y); listput(a,-z/q)); Vec(a)} \\ Bill McEachen, Jun 18 2025
    
  • PARI
    my(x='x+O(x^35), g=serreverse(x*(1-x)^2)); Vec((10*g^3 - 17*g^2 + 7*g - 1)/((1-3*g)*(2*g-1)*(4*g^2 - 6*g+1))) \\ Joerg Arndt, Jun 19 2025

Formula

A formula is given in the Bacher reference.
It seems that a(n) = Sum_{i, j, k>=0} C(n, i+j)*C(n, j+k)*C(n, k+i). - Benoit Cloitre, Oct 25 2004; proved in the article by Asinowski et al.
G.f.: seems to be (10*g^3 - 17*g^2 + 7*g - 1)/((1-3*g)*(2*g-1)*(4*g^2 - 6*g+1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011; proved in the article by Asinowski et al.
Conjecture: 2*n*(2*n-1)*(5*n^2 - 29*n + 30)*a(n) + (-295*n^4 + 1926*n^3 - 3425*n^2 + 2106*n - 360)*a(n-1) + 24*(3*n-4)*(3*n-5)*(5*n^2 - 19*n + 6)*a(n-2) = 0. - R. J. Mathar, Apr 23 2015. Proved by Andrei Asinowski, C. Krattenthaler, T. Mansour, Counting triangulations of balanced subdivisions of convex polygons, 2016.