cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087810 First differences of A029931.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -9, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -14, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 1, 1, 1, -5, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0
Offset: 1

Views

Author

Ralf Stephan, Oct 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[ Table[ (bits = IntegerDigits[n, 2]) . Reverse[ Range[ Length[bits]]], {n, 0, 92}]] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,if(n%4,1,1-valuation(n,2)*(valuation(n,2)-1)/2),1))
    
  • PARI
    a(n)=polcoeff(sum(k=0, floor(log(n)/log(2)), (k+1)*x^2^k/(1+x^2^k)) + O(x^(n+1)), n)
    
  • Scheme
    (define (A087810 n) (- (A029931 n) (A029931 (- n 1))))
    (define (A029931 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (+ s i))) (else (loop (/ n 2) (+ 1 i) s)))))
    ;; Antti Karttunen, Nov 18 2017

Formula

a(4n) = 1 - T(v_2(n)), else a(n) = 1, where T = A000217 (triangular numbers) and v_2 = A007814 (exponent of 2 in factorization of n).
G.f.: Sum_{k>=0} (k+1)t/(1+t), where t = x^2^k.
Multiplicative with a(2^e) = 1 - A000217(e-1), a(p^e) = 1 otherwise. - Mitch Harris, May 17 2005
Dirichlet g.f.: zeta(s) * (1 - 1/(2^s-1)^2). - Amiram Eldar, Oct 31 2023