A087956
a(n) is the square of the n-th partial sum minus the n-th partial sum of the squares, divided by a(n-1), for all n>=1, starting with a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 2, 11, 14, 45, 76, 197, 380, 895, 1838, 4143, 8762, 19353, 41496, 90793, 195928, 426811, 923802, 2008307, 4352902, 9454021, 20504420, 44513581, 96572820, 209609143, 454814022, 987068631, 2141901554, 4648293425, 10086929456
Offset: 0
a(4) = 14 since ((1+3+2+11)^2 - (1^2+3^2+2^2+11^2))/11 = (17^2-135)/11 = 14.
-
a(0)=1; a(1)=3; for(n=2,50,a(n)=((sum(k=0,n,a(k))^2-sum(k=0,n,a(k)^2))/a(n-1))
A087957
a(n) is the square of the n-th partial sum minus the n-th partial sum of the squares, divided by a(n-1), for all n>=1, starting with a(0)=1, a(1)=4.
Original entry on oeis.org
1, 4, 2, 14, 16, 56, 90, 242, 456, 1092, 2218, 5038, 10600, 23496, 50258, 110146, 237424, 517604, 1119730, 2435118, 5276704, 11462328, 24857322, 53967602, 117077240, 254122724, 551386842, 1196677774, 2596715576, 5635362056
Offset: 0
a(4) = 16 since ((1+4+2+14)^2 - (1^2+4^2+2^2+14^2))/14 = (21^2-217)/14 = 16.
-
a(0)=1; a(1)=4; for(n=2,50,a(n)=((sum(k=0,n,a(k))^2-sum(k=0,n,a(k)^2))/a(n-1))
A087958
a(n) is the square of the n-th partial sum minus the n-th partial sum of the squares, divided by a(n-1), for all n>=1, starting with a(0)=1, a(1)=5.
Original entry on oeis.org
1, 5, 2, 17, 18, 67, 104, 287, 532, 1289, 2598, 5933, 12438, 27639, 59020, 129499, 278920, 608397, 1315658, 2861929, 6200506, 13470635, 29210224, 63421623, 137581660, 298636305, 647959662, 1406286917, 3051529598, 6622430687
Offset: 0
a(4) = 18 since ((1+5+2+17)^2 - (1^2+5^2+2^2+17^2))/17 = (25^2-319)/17 = 18.
-
Join[{1},LinearRecurrence[{1,3,-1},{5,2,17},30]] (* Harvey P. Dale, Jul 07 2011 *)
-
a(0)=1; a(1)=5; for(n=2,50,a(n)=((sum(k=0,n,a(k))^2-sum(k=0,n,a(k)^2))/a(n-1))
Showing 1-3 of 3 results.