cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087963 Exponent of highest power of 2 dividing 3*prime(n)+1.

Original entry on oeis.org

0, 1, 4, 1, 1, 3, 2, 1, 1, 3, 1, 4, 2, 1, 1, 5, 1, 3, 1, 1, 2, 1, 1, 2, 2, 4, 1, 1, 3, 2, 1, 1, 2, 1, 6, 1, 3, 1, 1, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 4, 2, 1, 2, 1, 2, 1, 3, 1, 6, 2, 1, 4, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 5, 1, 1, 4, 3, 2, 2, 1, 4, 1, 2, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, Sep 18 2003

Keywords

Examples

			For n = 10: p = prime(10) = 29, 3*p + 1 = 88 = 2^3 * 11, a(10) = 3.
		

Crossrefs

Programs

  • Magma
    [Valuation(3*NthPrime(n)+1, 2): n in [1..80]]; // Vincenzo Librandi, Sep 01 2016
    
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; e2[x_] := Part[[ffi[x]], 2]; Table[e2[3*Prime[w]+1], {w, 1, 100}]
    IntegerExponent[3 * Prime[Range[100]] + 1, 2] (* Amiram Eldar, Jul 12 2024 *)
  • PARI
    a(n) = valuation(3*prime(n)+1, 2); \\ Michel Marcus, Sep 01 2016
    
  • Python
    from sympy import prime
    def A087963(n): return (~(m:=prime(n)*3+1)&m-1).bit_length() # Chai Wah Wu, Jul 10 2022

Formula

a(n) = A007814(3*prime(n)+1).

Extensions

a(1)=0 corrected by Michel Marcus, Sep 01 2016