cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011746 Expansion of (1 + x^2)/(1 + x^2 + x^5) mod 2.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011662.
Cf. A011747..A011751 for similar sequences and A011655 - A011745 for other binary m-sequences.

Programs

  • Maple
    series((1+x^2)/(1+x^2+x^5),x,100) mod 2;
  • Mathematica
    Mod[CoefficientList[Series[(1+x^2)/(1+x^2+x^5),{x,0,80}],x],2] (* Harvey P. Dale, Jul 19 2023 *)
  • PARI
    A011746_vec=Vec((1+x^2)/(1+x^2+x^5)+O(x^31))%2 \\ For illustrative purpose.
    A011746(n)=bittest(377253537,n%31) \\ M. F. Hasler, Feb 17 2018

Formula

a(n) = A088002(n) mod 2. - R. J. Mathar, May 26 2008
G.f.: (1+x^5+x^7+x^9+x^10+x^11+x^13+x^14+x^18+x^19+x^20+x^21+x^22+x^25+x^26+x^28)/(1-x^31). - Robert Israel, May 06 2018
a(n) = A011662(n-1). - R. J. Mathar, Jan 12 2024

A088001 a(n) is the sum of non-palindromic divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 21, 0, 23, 36, 25, 39, 27, 42, 29, 55, 31, 48, 0, 51, 35, 66, 37, 57, 52, 70, 41, 77, 43, 0, 60, 69, 47, 100, 49, 85, 68, 91, 53, 99, 0, 98, 76, 87, 59, 147, 61, 93, 84, 112, 78, 0, 67, 119, 92, 129, 71, 162, 73
Offset: 1

Views

Author

Labos Elemer, Oct 14 2003

Keywords

Crossrefs

Programs

  • Maple
    A088001 := proc(n)
            numtheory[sigma](n)-A088000(n) ;
    end proc; # R. J. Mathar, Jul 28 2016
  • Mathematica
    Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] != x &], {k, 73}] (* Jayanta Basu, Aug 12 2013 *)
    Table[Total[Select[Divisors[n],!PalindromeQ[#]&]],{n,80}] (* Harvey P. Dale, May 15 2025 *)
  • Python
    def ispal(n):
        return n==int(str(n)[::-1])
    def A088001(n):
        s=0
        for i in range(1, n+1):
            if n%i==0 and not ispal(i):
                 s+=i
        return s # Indranil Ghosh, Feb 10 2017

Formula

a(n)=0 iff all divisors are palindromic. See A062687.
a(n)+A088000(n) = A000203(n). - R. J. Mathar, Sep 09 2015

A011662 A binary m-sequence: expansion of reciprocal of x^5 + x^2 + 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The auxiliary sequence with o.g.f. x^4/(1 + x^2 + x^5) can be obtained by deleting the first term in A088002 and flipping all signs. - R. J. Mathar, May 26 2008
Period 31: repeat 0,0,0,0,1,0,1,0,1,1,1,0,1,1,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1. - Ralf Stephan, Aug 05 2013

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.

Programs

  • Mathematica
    Join[Table[0, 4], Mod[CoefficientList[1/(x^5 + x^2 + 1) + O[x]^77, x], 2]] (* Jean-François Alcover, Feb 23 2018 *)
Showing 1-3 of 3 results.