A088003 Take the list t(n,0) = {1,...,n}; denote by t(n,j) this list after rotating to left (or right) by j positions. Calculate inner product of t(n,0) and t(n,j) and denote the value by s(n,j). Compute this inner product for all j = 1..n and choose the smallest. This is a(n).
1, 4, 11, 22, 40, 64, 98, 140, 195, 260, 341, 434, 546, 672, 820, 984, 1173, 1380, 1615, 1870, 2156, 2464, 2806, 3172, 3575, 4004, 4473, 4970, 5510, 6080, 6696, 7344, 8041, 8772, 9555, 10374, 11248, 12160, 13130, 14140, 15211, 16324, 17501, 18722, 20010
Offset: 1
Examples
For n=6: t(6,0) = {1,2,3,4,5,6}, t(6,3) = {4,5,6,1,2,3}; compute scalar products for all rotations: {76,67,64,67,76,91} of which the smallest is 64, so a(6)=64.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
t0[x_] := Table[w, {w, 1, x}]; jr[x_, j_] := RotateRight[t0[x], j]; Table[Min[Table[Apply[Plus, t0[g]*jr[g, i]], {i, 1, g}]], {g, 1, up}]
Formula
a(n) = Min{y; y=t(n, 0)*t(n, x)=s(n, x); for x=1..n}.
a(n) = n*(2*n*(5*n+12)-3*(-1)^n+11)/48.
G.f.: x*(1+2*x+2*x^2)/((1+x)^2*(1-x)^4). - Bruno Berselli, Dec 01 2010
a(n) = Sum_{i=0..floor(n/2)} (n-i)*(n-2*i). For n=7, a(7) = 7*7 + 6*5 + 5*3 + 4*1 = 98. - Bruno Berselli, Oct 26 2015
Extensions
Edited by Bruno Berselli, Dec 01 2010
Comments