cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088014 Expansion of e.g.f.: cosh(sqrt(2)*x)*(1+exp(x)).

Original entry on oeis.org

2, 1, 5, 7, 21, 41, 107, 239, 593, 1393, 3395, 8119, 19665, 47321, 114371, 275807, 666113, 1607521, 3881411, 9369319, 22620561, 54608393, 131838371, 318281039, 768402497, 1855077841, 4478562275, 10812186007, 26102942481, 63018038201
Offset: 0

Views

Author

Paul Barry, Sep 18 2003

Keywords

Crossrefs

Cf. A052950.
Cf. A002315.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x-2)*(2*x-1)*(1+x)/((2*x^2-1)*(x^2+2*x-1)))); // G. C. Greubel, Aug 16 2018
  • Mathematica
    With[{nn=30},CoefficientList[Series[Cosh[Sqrt[2]x](1+Exp[x]),{x,0,nn}],x]Range[0,nn]!] (* or *) LinearRecurrence[{2,3,-4,-2},{2,1,5,7},30] (* Harvey P. Dale, Jul 31 2012 *)
  • PARI
    x='x+O('x^50); Vec((x-2)*(2*x-1)*(1+x)/((2*x^2-1)*(x^2+2*x-1))) \\ G. C. Greubel, Aug 16 2018
    

Formula

G.f.: (x-2)*(2*x-1)*(1+x) / ( (2*x^2-1)*(x^2+2*x-1) ).
E.g.f.: cosh(sqrt(2)*x)*(1+exp(x)).
a(n) = ((sqrt(2))^n + (-sqrt(2))^n + (1+sqrt(2))^n + (1-sqrt(2))^n)/2.
a(0)=2, a(1)=1, a(2)=5, a(3)=7, a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 2*a(n-4). - Harvey P. Dale, Jul 31 2012