cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088015 Expansion of e.g.f. cosh(sqrt(2)*x) + exp(x)*(cosh(sqrt(2)*x) - 1).

Original entry on oeis.org

1, 0, 4, 6, 20, 40, 106, 238, 592, 1392, 3394, 8118, 19664, 47320, 114370, 275806, 666112, 1607520, 3881410, 9369318, 22620560, 54608392, 131838370, 318281038, 768402496, 1855077840, 4478562274, 10812186006, 26102942480, 63018038200
Offset: 0

Views

Author

Paul Barry, Sep 18 2003

Keywords

Comments

This sequence is A000079 (with interpolated zeros) + 2*(A048739 (with two leading zeros)).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 -3*x +3*x^2 +x^3 -4*x^4)/((1-x)*(1-2*x-3*x^2+4*x^3+2*x^4)))); // G. C. Greubel, Sep 27 2018
  • Mathematica
    LinearRecurrence[{3,1,-7,2,2},{1,0,4,6,20},30] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    x='x+O('x^30); Vec((1 -3*x +3*x^2 +x^3 -4*x^4)/((1-x)*(1-2*x-3*x^2+4*x^3+2*x^4))) \\ G. C. Greubel, Sep 27 2018
    

Formula

a(n) = A088014(n)-1.
G.f.: (1 -3*x +3*x^2 +x^3 -4*x^4)/((1-x)*(1-2*x-3*x^2+4*x^3+2*x^4)).
E.g.f. : cosh(sqrt(2)x)+exp(x)(cosh(sqrt(2)x)-1);
a(n) = ((sqrt(2))^n +(-sqrt(2))^n +(1+sqrt(2))^n +(1-sqrt(2))^n)/2 -1.
G.f.: ( -1-3*x^2-x^3+4*x^4+3*x ) / ( (x-1)*(2*x^2-1)*(x^2+2*x-1) ). - R. J. Mathar, Dec 10 2014