A088042 Number of permutations in the symmetric group S_n such that the size of their conjugacy class is odd.
1, 2, 4, 4, 16, 76, 232, 106, 946, 5716, 27776, 63856, 272416, 2390480, 10349536, 2027026, 34459426, 344594404, 2618916472, 10475679736, 54997260256, 568305978472, 3132225435824, 1807129471456, 12047128545376, 175289251587776, 1326384554695552
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Programs
-
Maple
a:= n-> n!*add((binomial(n-(n mod 2), 2*k) mod 2)/((n-2*k)!*k!*2^k), k=0..floor(n/2)): seq(a(n), n=1..30); # Alois P. Heinz, May 01 2013
-
Mathematica
a[n_] := n!*Sum[Mod[Binomial[n-Mod[n, 2], 2*k], 2]/((n-2*k)!*k!*2^k), {k, 0, Floor[n/2]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..floor(n/2)} n!/(n-2*k)!/k!/2^k*(C(n-(n mod 2), 2*k) mod 2). - Vladeta Jovovic, Nov 06 2003
Extensions
More terms from Vladeta Jovovic, Nov 03 2003