cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077504 Smallest n-digit prime beginning with n.

Original entry on oeis.org

23, 307, 4001, 50021, 600011, 7000003, 80000023, 900000011, 1000000007, 11000000021, 120000000007, 1300000000021, 14000000000003, 150000000000007, 1600000000000007, 17000000000000009, 180000000000000029
Offset: 2

Views

Author

Amarnath Murthy, Nov 08 2002

Keywords

Crossrefs

Extensions

More terms from Sascha Kurz, Jan 04 2003

A088754 Number of n-digit primes beginning with prime(n).

Original entry on oeis.org

1, 2, 14, 107, 103, 851, 6931, 59557, 518971, 4585526, 41368791, 375232730, 3441863700, 31843327587, 295907384843, 2761221438054, 25890141962275, 244138314690159, 2306482418751769, 21874074143081175, 208132164249925671, 1983046852246630734, 18946883921641542673
Offset: 1

Views

Author

Ray Chandler, Oct 15 2003

Keywords

Comments

Subsidiary sequence suggested in A088104.

Examples

			a(2) = 2 since 31 and 37 are the only two 2-digit primes beginning with prime(2) = 3.
		

Crossrefs

Programs

  • PARI
    A088754(n)={ local (resul,sdig,p,lo,hi) ; sdig=prime(n) ; lo=sdig ; hi=sdig+1 ; while( lo < 10^(n-1), lo *= 10 ; hi *= 10 ; ) ; resul=0 ; p=nextprime(lo) ; while(p < hi, resul++ ; p=nextprime(p+1) ; ) ; return(resul) ; }
    { for(n=1,11, print(A088754(n)); ) } \\ R. J. Mathar, Sep 25 2006
    
  • Python
    from sympy import prime, primepi
    def A088754(n):
        p = prime(n)
        m = n-len(str(p))
        return primepi((p+1)*10**m)-primepi(p*10**m) # Chai Wah Wu, Jun 18 2019

Extensions

a(10) from R. J. Mathar, Sep 25 2006
a(11)-a(14) from Floris P. van Doorn and Jasper Mulder (florisvandoorn(AT)hotmail.com), Oct 12 2009
a(15)-a(22) from Donovan Johnson, Apr 24 2013
a(23) from Chai Wah Wu, Jun 19 2019

A077505 a(n) = A077504(n) - n*10^d where d = n - number of digits in n.

Original entry on oeis.org

3, 7, 1, 21, 11, 3, 23, 11, 7, 21, 7, 21, 3, 7, 7, 9, 29, 9, 11, 59, 97, 3, 11, 163, 147, 91, 87, 23, 7, 291, 167, 337, 73, 93, 133, 3, 177, 257, 7, 149, 103, 3, 27, 13, 39, 137, 19, 31, 351, 209, 151, 489, 101, 153, 281, 139, 81, 47, 367, 189, 47, 29, 199, 3, 1, 63, 29, 83
Offset: 2

Views

Author

Amarnath Murthy, Nov 08 2002

Keywords

Comments

A guess: number of digits in a(n) < log(n) for large n.

Examples

			a(5) = 50021 - 50000 = 21.
		

Crossrefs

Extensions

More terms from Sascha Kurz, Jan 04 2003

A088105 a(n) = smallest n-digit prime beginning with prime(n)- smallest n-digit number beginning with prime(n).

Original entry on oeis.org

0, 1, 3, 1, 3, 3, 21, 13, 3, 17, 27, 3, 3, 63, 23, 129, 11, 31, 21, 47, 1, 13, 47, 53, 307, 11, 19, 17, 151, 11, 39, 23, 93, 33, 23, 7, 1, 147, 219, 39, 71, 201, 93, 7, 39, 153, 21, 9, 89, 247, 69, 27, 79, 137, 159, 41, 21, 253, 19, 249, 151, 101, 91, 501, 339, 269, 147, 63, 9
Offset: 1

Views

Author

Amarnath Murthy, Sep 24 2003

Keywords

Examples

			a(6) =3 = 130003 - 130000.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Oct 15 2003

A088755 Number of n-digit primes beginning with n.

Original entry on oeis.org

0, 2, 16, 119, 924, 7445, 63129, 547572, 4838319, 4814936, 43167234, 391378851, 3580266494, 32997926272, 306051434210, 2853931339135, 26737370196938, 251515351394258, 2374493400086829, 22488661383368556, 213597279448646179, 2033961812788210675, 19413250431142245897
Offset: 1

Views

Author

Ray Chandler, Oct 15 2003

Keywords

Comments

This is a subsidiary sequence suggested in A088104.

Examples

			a(2) = 2 since 23 and 29 are the only two 2-digit primes beginning with 2.
		

Crossrefs

Extensions

More terms from Harvey P. Dale, Oct 16 2003
a(10)-a(13) corrected and a(14)-a(22) from Donovan Johnson, Apr 24 2013
Incorrect Mathematica program deleted by Harvey P. Dale, Apr 25 2013
a(23) from Chai Wah Wu, Jun 20 2019

A225903 The smallest number beginning with n whose distinct prime factors are the first n primes.

Original entry on oeis.org

16, 24, 30, 420, 50820, 60060, 7147140, 87297210, 9369900540, 103515091680, 11030826957150, 126152548291770, 13387011595197240, 143910374648370330, 15372244564712285250, 162945792385950223650, 17304843151387913751630, 1876614101750511535732320
Offset: 1

Views

Author

Keywords

Comments

a(3)=30 is the only term with fewer than 1000 digits whose superscripts are all 1.
Though counterexamples are possible, it appears that the sequence is strictly increasing (confirmed for n < 350, and counterexamples are increasingly unlikely statistically thereafter).

Examples

			For a(6), the number 60060 = 2^2 * 3 * 5 * 7 * 11 * 13. The only number smaller whose factors contains the first 6 primes is 30030, which does not begin with 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n], ba = Product[Prime@k, {k, n}], d = IntegerDigits@ n, mu = 1}, While[d != Take[IntegerDigits[mu*ba], Length@d] || Max[ First /@ FactorInteger[mu]] > p, mu++]; mu*ba]; Array[a, 20] (* Giovanni Resta, May 27 2013 *)
  • R
    library(gmp); primes<-function(n) { x=as.bigz(rep(2,n)); for(i in 2:n) x[i]=nextprime(x[i-1]); as.vector(x[1:n]) }
    newmin<-function(b,d) { if(d>length(b)) return();
        while(1) { b[d]=b[d]+1; if((x=prod(pr^b))>v) return()
            if(substr(x,1,ndig(i))==as.character(i)) { v<<-x; return() }
            if(b[d]==2) {b[d]=1; newmin(b,d+1); b[d]=2 }
            newmin(b,d+1)
        }
    }
    y=as.bigz(rep(0,50))
    for(i in 1:50) {
        pr=primes(i); b=rep(1,i)
        while(substr((v=prod(pr^b)),1,ndig(i))!=as.character(i)) b[1]=b[1]+1;
        while(b[1]>1) { b[1]=b[1]-1; newmin(b,2) }
        if(y[i]>v) y[i]=v;
    }
Showing 1-6 of 6 results.