cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088152 Value of n-th digit in octal representation of n^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 6, 6, 5, 0, 0, 4, 4, 6, 1, 3, 3, 1, 4, 5, 4, 0, 5, 0, 3, 0, 3, 4, 1, 3, 5, 6, 2, 1, 6, 6, 5, 5, 0, 1, 0, 0, 5, 6, 3, 7, 6, 4, 1, 1, 3, 3, 6, 4, 3, 1, 0, 0, 0, 4, 4, 0, 3, 6, 1, 1, 2, 5, 0, 0, 5, 2, 6, 0, 2, 4, 7, 5, 6, 4, 2, 1, 6, 4, 3, 6, 7, 4, 6, 0, 5, 7, 5, 3, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 20 2003

Keywords

Comments

a(n)=d(n) with n^n = Sum(d(k)*8^k: 0<=d(k)<8, k>=0).

Examples

			n=9, 9^9=387420489 -> '2705710511', '2---------': a(9)=2;
a(0)=1, a(k)=0 for 0<k<8 and a(8)=1.
		

Crossrefs

Programs

  • Magma
    [Floor(n^n/8^n) mod 8:n in [0..101]]; // Marius A. Burtea, Sep 20 2019
  • Maple
    f:= proc(n) local x,L;
       x:= n &^ n mod 8^(n+1);
       floor(x/8^n)
    end proc:
    f(0):= 1:
    map(f, [$0..101]); # Robert Israel, Sep 19 2019

Formula

a(n) = floor(n^n / 8^n) mod 8.