A088152 Value of n-th digit in octal representation of n^n.
1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 6, 6, 5, 0, 0, 4, 4, 6, 1, 3, 3, 1, 4, 5, 4, 0, 5, 0, 3, 0, 3, 4, 1, 3, 5, 6, 2, 1, 6, 6, 5, 5, 0, 1, 0, 0, 5, 6, 3, 7, 6, 4, 1, 1, 3, 3, 6, 4, 3, 1, 0, 0, 0, 4, 4, 0, 3, 6, 1, 1, 2, 5, 0, 0, 5, 2, 6, 0, 2, 4, 7, 5, 6, 4, 2, 1, 6, 4, 3, 6, 7, 4, 6, 0, 5, 7, 5, 3, 6
Offset: 0
Examples
n=9, 9^9=387420489 -> '2705710511', '2---------': a(9)=2; a(0)=1, a(k)=0 for 0<k<8 and a(8)=1.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Octal
Programs
-
Magma
[Floor(n^n/8^n) mod 8:n in [0..101]]; // Marius A. Burtea, Sep 20 2019
-
Maple
f:= proc(n) local x,L; x:= n &^ n mod 8^(n+1); floor(x/8^n) end proc: f(0):= 1: map(f, [$0..101]); # Robert Israel, Sep 19 2019
Formula
a(n) = floor(n^n / 8^n) mod 8.
Comments