A088157 Value of (n+1)-th digit in sexagesimal representation of n^n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 21, 2, 1, 59, 5, 49, 2, 19, 57, 20, 45, 35, 30, 0, 5, 28, 50, 4, 19, 50, 23, 32, 10, 23, 38, 16, 45, 29, 6
Offset: 0
Examples
a(0) = 1, a(k) = 0 for 0 < k < 60 and a(60) = 1.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Sexagesimal
Programs
-
Haskell
a088157 n = mod (div (n ^ n) (60 ^ n)) 60 -- Reinhard Zumkeller, Mar 14 2014
-
Mathematica
f[n_] := IntegerDigits[n^n, 60, n + 1][[1]]; f[0] = 1; Array[f, 92, 0] (* Robert G. Wilson v, Dec 27 2012 *)
-
PARI
a(n)=lift(chinese(chinese(Mod(n,3^(n+1))^n,Mod(n,4^(n+1))^n), Mod(n,5^(n+1))^n))\60^n \\ Charles R Greathouse IV, Dec 27 2012
Formula
a(n) = floor(n^n / 60^n) mod 60.
Comments