cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088157 Value of (n+1)-th digit in sexagesimal representation of n^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 21, 2, 1, 59, 5, 49, 2, 19, 57, 20, 45, 35, 30, 0, 5, 28, 50, 4, 19, 50, 23, 32, 10, 23, 38, 16, 45, 29, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 20 2003

Keywords

Comments

a(n) = d(n) with n^n = Sum(d(k)*60^k: 0 <= d(k) < 60, k >= 0).

Examples

			a(0) = 1, a(k) = 0 for 0 < k < 60 and a(60) = 1.
		

Crossrefs

Programs

  • Haskell
    a088157 n = mod (div (n ^ n) (60 ^ n)) 60
    -- Reinhard Zumkeller, Mar 14 2014
  • Mathematica
    f[n_] := IntegerDigits[n^n, 60, n + 1][[1]]; f[0] = 1; Array[f, 92, 0] (* Robert G. Wilson v, Dec 27 2012 *)
  • PARI
    a(n)=lift(chinese(chinese(Mod(n,3^(n+1))^n,Mod(n,4^(n+1))^n), Mod(n,5^(n+1))^n))\60^n \\ Charles R Greathouse IV, Dec 27 2012
    

Formula

a(n) = floor(n^n / 60^n) mod 60.