A088165 NSW primes: NSW numbers that are also prime.
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679
Offset: 1
Keywords
References
- Paulo Ribenboim, The New Book of Prime Number Records, 3rd edition, Springer-Verlag, New York, 1995, pp. 367-369.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..14
- Morris Newman, Daniel Shanks, H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981), pp. 129-140.
- M. Newman, D. Shanks and L. L. Foster, Simple groups of square order (6176), The American Mathematical Monthly, Vol. 86, No. 4 (Apr., 1979), pp. 314-315.
- The Prime Glossary, NSW numbers
Programs
-
PARI
w=3+quadgen(32); forprime(p=2,1e3, if(ispseudoprime(t=imag((1+w)*w^p)), print1(t", "))) \\ Charles R Greathouse IV, Apr 29 2015
Formula
a(n) mod A005850(n) = 1. - Altug Alkan, Mar 17 2016
Extensions
More terms from Ray Chandler, Sep 21 2003
Comments