A088177 a(1)=1, a(2)=1; for n>2, a(n) is the smallest positive integer such that the products a(i)*a(i+1), i=1..n-1, are all distinct.
1, 1, 2, 2, 3, 1, 5, 2, 4, 3, 3, 5, 4, 4, 6, 3, 7, 1, 11, 2, 7, 4, 8, 5, 5, 6, 6, 7, 5, 9, 3, 11, 4, 12, 5, 10, 7, 7, 8, 8, 9, 6, 11, 5, 13, 1, 17, 2, 13, 3, 17, 4, 13, 6, 14, 7, 9, 9, 10, 8, 11, 7, 13, 8, 12, 9, 11, 10, 10, 12, 11, 11, 13, 9, 14, 8, 16, 9
Offset: 1
Examples
Given that the sequence begins 1,1,2,2,... then a(5)=3, since either of the choices a(5)=1 or a(5)=2 would lead to a repetition of one of the previous products 1,2,4 of adjacent pairs of terms.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000, (first 1000 terms from T. D. Noe)
Crossrefs
Programs
-
Maple
A[1]:= 1: A[2]:= 1: S:= {1}: for n from 3 to 100 do Sp:= select(type,map(s -> s/A[n-1],S),integer); if nops(Sp) = Sp[-1] then A[n]:= Sp[-1]+1 else A[n]:= min({$1..Sp[-1]} minus Sp) fi; S:= S union {A[n-1]*A[n]}; od: seq(A[n],n=1..100); # Robert Israel, Aug 28 2014
-
Mathematica
t = {1, 1}; Do[AppendTo[t, 1]; While[Length[Union[Most[t]*Rest[t]]] < n - 1, t[[-1]]++], {n, 3, 100}]; t (* T. D. Noe, Nov 16 2011 *)
-
Python
from itertools import islice def A088177(): # generator of terms yield 1 yield 1 p, a = {1}, 1 while True: n = 1 while n*a in p: n += 1 p.add(n*a) a = n yield n A088177_list = list(islice(A088177(),20)) # Chai Wah Wu, Oct 21 2021
Comments