cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088182 E.g.f.: 1/(1-sinh(x)-x-x^2/2).

Original entry on oeis.org

2, 9, 61, 550, 6201, 83894, 1324177, 23886552, 484745029, 10930266652, 271107065043, 7335664739264, 215030576905171, 6788059632853620, 229590704738375917, 8283076586956304128, 317510426598228001881
Offset: 1

Views

Author

Karol A. Penson, Sep 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[1/(1-Sinh[x]-x-x^2/2),{x,0,nn}], x]Range[0,nn]!]] (* Harvey P. Dale, May 21 2012 *)

Formula

a(n) ~ n!/((cosh(r)+1+r)*r^(n+1)), where r = 0.4434887492889753... is the root of the equation r*(2+r)+2*sinh(r)=2. - Vaclav Kotesovec, Jun 27 2013

A088189 Expansion of e.g.f.: 1/(1-sinh(x)-x-x^2).

Original entry on oeis.org

1, 2, 10, 73, 712, 8681, 127004, 2167789, 42287088, 928006801, 22628305012, 606939739253, 17759375280200, 562952693773081, 19217673118604172, 702899000556953437, 27422924828816762848, 1136746326170994466337, 49892691063347466789860, 2311486678172789188448965, 112725522031113629713962552
Offset: 0

Views

Author

Karol A. Penson, Sep 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sinh[x]-x-x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)

Formula

a(n) ~ n!/((cosh(r)+1+2*r)*r^(n+1)), where r = 0.41010884430143... is the root of the equation r+r^2+sinh(r)=1. - Vaclav Kotesovec, Jun 27 2013

Extensions

a(0) = 1 prepended by Georg Fischer, Apr 25 2025
Showing 1-2 of 2 results.