cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088192 Distance between prime(n) and the largest quadratic residue modulo prime(n).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 2, 5, 1, 3, 1, 1, 2, 5, 1, 2, 1, 2, 7, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 3, 1, 2, 5, 1, 2, 1, 7, 1, 1, 3, 2, 3, 2, 1, 1, 7, 1, 2, 1, 5, 1, 3, 1, 1, 2, 1, 2, 11, 1, 1, 2, 1, 2, 1, 1, 7, 3, 1, 2, 5, 1, 1, 1, 1, 2, 1, 7, 1, 3, 2, 1, 1, 1, 3, 2, 13, 3, 2, 2, 5, 1, 1, 2, 1
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003

Keywords

Comments

a(n) = smallest m>0 such that -m is a quadratic residue modulo prime(n).
a(n) = smallest m>0 such that prime(n) either splits or ramifies in the imaginary quadratic field Q(sqrt(-m)). Equals -A220862(n) except when n = 1. Cf. A220861, A220863. - N. J. A. Sloane, Dec 26 2012
The values are 1 or a prime number (easily provable!). The maximum occurring prime values increase very slowly: up to 10^5 terms the largest prime is 43. The primes do not appear in order.

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105. - From N. J. A. Sloane, Dec 26 2012

Crossrefs

Records are (essentially) given by A147971.

Programs

  • Mathematica
    a[n_] := With[{p = Prime[n]}, If[JacobiSymbol[-1, p] > 0, 1, For[d = 2, True, d = NextPrime[d], If[JacobiSymbol[-d, p] >= 0, Return[d]]]]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2018, after Charles R Greathouse IV *)
  • PARI
    qrp_pm(fr,to)= {/* The distance of largest QR modulo the primes from the primes */ local(m,p,v=[]); for(i=fr,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m
    				
  • PARI
    do(p)=if(kronecker(-1,p)>0, 1, forprime(d=2, p, if(kronecker(-d, p) >= 0, return(d))))
    apply(do, primes(100)) \\ Charles R Greathouse IV, Oct 31 2012

Formula

a(n) = A053760(n) unless -1 is a quadratic residue mod prime(n). - Charles R Greathouse IV, Oct 31 2012

Extensions

Edited by Max Alekseyev, Oct 29 2012