cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088207 a(n) = Sum_{k=0..n} floor(k*phi^2) where phi=(1+sqrt(5))/2.

Original entry on oeis.org

0, 2, 7, 14, 24, 37, 52, 70, 90, 113, 139, 167, 198, 232, 268, 307, 348, 392, 439, 488, 540, 594, 651, 711, 773, 838, 906, 976, 1049, 1124, 1202, 1283, 1366, 1452, 1541, 1632, 1726, 1822, 1921, 2023, 2127, 2234, 2343, 2455, 2570, 2687, 2807, 2930, 3055, 3183
Offset: 0

Views

Author

Gary W. Adamson, Sep 23 2003

Keywords

Comments

Partial sums of A001950.
A001950 is the upper Beatty sequence for the constant phi^2, where phi = (1 + sqrt(5))/2 and the sequence is generated by floor(n*phi). A054347 = partial sums of the lower Beatty sequence (A000201).
Conjecture: a(n)/A054347(n) tends to phi. Example: a(28)/A054347(28) = 1049/643 = 1.6314...
From Michel Dekking, Aug 19 2019: (Start)
Proof of Adamson's conjecture. We know that lim_{n->oo} A054347(n)/(n*(n+1)) = phi/2 (see A054347).
Using that floor(k*phi^2) = floor(k*phi)+k, for k=1,...,n, we obtain a(n)/A054347(n) = (A054347(n)+n*(n+1)/2)/A054347(n) = 1+(n*(n+1)/2)/A054347(n) -> 1+(2/phi)*(1/2), which equals phi. [parentheses corrected by Jason Yuen, Jan 12 2025]
(End)

Examples

			A001950(1) = 2, then 5, 7, 10, 13, ...; partial sums are 2, 7, 14, 24, 37, ...
		

Crossrefs

Cf. A001622 (phi), A001950, A054347, A000201, A000217 (triangular numbers).

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = (a[n - 1] + Floor[n*(1 + Sqrt[5])^2/4]); Table[ a[n], {n, 1, 50}] (* Robert G. Wilson v, Sep 27 2003 *)
    Accumulate[Floor[GoldenRatio^2 Range[0,50]]] (* Harvey P. Dale, Aug 11 2021 *)
  • Python
    from math import isqrt
    from itertools import islice, count, accumulate
    def A088207_gen(): # generator of terms
        return accumulate((n+isqrt(5*n**2)>>1)+n for n in count(0))
    A088207_list = list(islice(A088207_gen(),10)) # Chai Wah Wu, Aug 29 2022

Formula

a(n) = Sum_{k=1..n} floor(k*phi^2).
a(n) = floor((n*(n+1)/2)*phi^2 - n/2) + (0 or 1). - Benoit Cloitre, Sep 27 2003
a(n) = Sum_{k=1..n} floor(k*phi)+k = A054347(n)+n*(n+1)/2. - Jason Yuen, Jan 12 2025

Extensions

More terms from Robert G. Wilson v and Benoit Cloitre, Sep 27 2003