A088208 Table read by rows where T(0,0)=1; n-th row has 2^n terms T(n,j),j=0 to 2^n-1. For j==0 mod 2, T(n+1,2j)=T(n,j) and T(n+1,2j+1)=T(n,j)+2^n. For j==1 mod 2, T(n+1,2j+1)=T(n,j) and T(n+1,2j)=T(n,j)+2^n.
1, 1, 2, 1, 3, 4, 2, 1, 5, 7, 3, 4, 8, 6, 2, 1, 9, 13, 5, 7, 15, 11, 3, 4, 12, 16, 8, 6, 14, 10, 2, 1, 17, 25, 9, 13, 29, 21, 5, 7, 23, 31, 15, 11, 27, 19, 3, 4, 20, 28, 12, 16, 32, 24, 8, 6, 22, 30, 14, 10, 26, 18, 2, 1, 33, 49, 17, 25, 57, 41, 9, 13, 45, 61, 29, 21, 53, 37, 5, 7, 39, 55, 23
Offset: 1
Examples
1 1 2 1 3 4 2 1 5 7 3 4 8 6 2 1 9 13 5 7 15 11 3 4 12 16 8 6 14 10 2
References
- Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W.H. Freeman, 1991, p. 282.
Links
- Reinhard Zumkeller, Rows n = 1..13 of triangle, flattened
Programs
-
Haskell
a088208 n k = a088208_tabf !! (n-1) !! (k-1) a088208_row n = a088208_tabf !! (n-1) a088208_tabf = iterate f [1] where f vs = (map (subtract 1) ws) ++ reverse ws where ws = map (* 2) vs -- Reinhard Zumkeller, Mar 14 2015
-
Mathematica
nmax = 6; T[, 0] = 1; T[n, j_] /; j == 2^n = n; Do[Which[ EvenQ[j], T[n+1, 2j] = T[n, j]; T[n+1, 2j+1] = T[n, j] + 2^n, OddQ[j], T[n+1, 2j+1] = T[n, j]; T[n+1, 2j] = T[n, j] + 2^n], {n, 0, nmax}, {j, 0, 2^n-1}]; Table[T[n, j], {n, 0, nmax}, {j, 0, 2^n-1}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
Extensions
Edited by Ray Chandler and N. J. A. Sloane, Oct 08 2003
Comments