A088217 Number of distinct values that can be assumed by the determinant of an n X n matrix whose entries are all permutations of the numbers 1..n^2.
1, 6, 777, 79455, 13602389, 3722956267
Offset: 1
Examples
a(2)=6 because the determinants of the 24 2 X 2 matrices whose entries are all permutations of 1,2,3,4 can only assume the values -10,-5,-2,2,5,10.
Programs
-
Fortran
C See link given in A088238.
-
Mathematica
f[n_] := (p = Permutations[ Table[i, {i, n^2}]]; Length[ Union[ Table[ Det[ Partition[ p[[i]], n]], {i, 1, (n^2)!}]]]) (* Robert G. Wilson v *)
Extensions
Minor edits and a(6) from Hugo Pfoertner, Sep 08 2019
Comments