cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088221 Coefficient of x^n in g.f.^n is A000698(n+1).

Original entry on oeis.org

1, 2, 3, 10, 63, 558, 6226, 82836, 1272555, 22103638, 427715118, 9118752300, 212335628550, 5362040637900, 145970732893284, 4261945511044520, 132868133756374707, 4405535689300995942, 154819142574597555670
Offset: 0

Views

Author

Michael Somos, Sep 24 2003

Keywords

Crossrefs

Programs

  • Maple
    c:= proc(n) option remember;
          if n=1 then 1
        else (n-1)*add( c(j)*c(n-j), j=1..n-1)
          fi; end:
    a:= proc(n) option remember;
            if n<2 then n+1
          else add( (4*j-1)*c(j)*c(n-j), j=1..n-1)
            fi; end;
    seq(a(n), n=0..20); # G. C. Greubel, Feb 08 2020
  • Mathematica
    c[n_]:= c[n]= If[n==1, 1, (n-1)*Sum[c[j]*c[n-j], {j,n-1}]];
    a[n_]:= If[n<2, n+1, Sum[(4*j-1)*c[j]*c[n-j], {j,n-1}]];
    Table[a[n], {n, 0, 20}] (* G. C. Greubel, Feb 08 2020 *)
  • Sage
    @CachedFunction
    def c(n):
        if (n==1): return 1
        else: return (n-1)*sum( c(j)*c(n-j) for j in (1..n-1) )
    def a(n):
        if (n<2): return n+1
        else: return sum( (4*j-1)*c(j)*c(n-j) for j in (1..n-1) )
    [a(n) for n in (0..20)] # G. C. Greubel, Feb 08 2020

Formula

a(n) = Sum_{j=1..n-1} (4*j-1)*A000699(j)*A000699(n-j), with a(0)=1, a(1)=2. - G. C. Greubel, Feb 08 2020