A088221 Coefficient of x^n in g.f.^n is A000698(n+1).
1, 2, 3, 10, 63, 558, 6226, 82836, 1272555, 22103638, 427715118, 9118752300, 212335628550, 5362040637900, 145970732893284, 4261945511044520, 132868133756374707, 4405535689300995942, 154819142574597555670
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
- Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
Programs
-
Maple
c:= proc(n) option remember; if n=1 then 1 else (n-1)*add( c(j)*c(n-j), j=1..n-1) fi; end: a:= proc(n) option remember; if n<2 then n+1 else add( (4*j-1)*c(j)*c(n-j), j=1..n-1) fi; end; seq(a(n), n=0..20); # G. C. Greubel, Feb 08 2020
-
Mathematica
c[n_]:= c[n]= If[n==1, 1, (n-1)*Sum[c[j]*c[n-j], {j,n-1}]]; a[n_]:= If[n<2, n+1, Sum[(4*j-1)*c[j]*c[n-j], {j,n-1}]]; Table[a[n], {n, 0, 20}] (* G. C. Greubel, Feb 08 2020 *)
-
Sage
@CachedFunction def c(n): if (n==1): return 1 else: return (n-1)*sum( c(j)*c(n-j) for j in (1..n-1) ) def a(n): if (n<2): return n+1 else: return sum( (4*j-1)*c(j)*c(n-j) for j in (1..n-1) ) [a(n) for n in (0..20)] # G. C. Greubel, Feb 08 2020
Formula
a(n) = Sum_{j=1..n-1} (4*j-1)*A000699(j)*A000699(n-j), with a(0)=1, a(1)=2. - G. C. Greubel, Feb 08 2020