A088225 Solutions to x^n == 7 (mod 11).
2, 6, 7, 8, 13, 17, 18, 19, 24, 28, 29, 30, 35, 39, 40, 41, 46, 50, 51, 52, 57, 61, 62, 63, 68, 72, 73, 74, 79, 83, 84, 85, 90, 94, 95, 96, 101, 105, 106, 107, 112, 116, 117, 118, 123, 127, 128, 129, 134, 138, 139, 140, 145, 149, 150, 151, 156, 160, 161, 162, 167, 171
Offset: 1
Examples
2^7 - 7 = 121 = 11*11. Thus 2 is in the sequence. 13^7 - 7 = 11*5704410. Thus 13 is in the sequence.
References
- E. Grosswald, Topics From The Theory of Numbers, 1966, pp. 62-63.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,1,-1},{2,6,7,8,13},70] (* Harvey P. Dale, Jan 30 2015 *)
-
PARI
conxkmap(a,p,n) = { for(x=1,n, for(j=1,n, y=x^j-a; if(y%p==0,print1(x","); break) ) ) }
-
PARI
a(n) = (-9 - (-1)^n - (7-I)*(-I)^n - (7+I)*I^n + 22*n)/8 \\ Colin Barker, Oct 16 2015
-
PARI
Vec(x*(3*x^4+x^3+x^2+4*x+2)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Oct 16 2015
Formula
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. - Harvey P. Dale, Jan 30 2015
From Colin Barker, Oct 16 2015: (Start)
a(n) = (-9 - (-1)^n - (7-i)*(-i)^n - (7+i)*i^n + 22*n)/8, where i=sqrt(-1).
G.f.: x*(3*x^4+x^3+x^2+4*x+2) / ((x-1)^2*(x+1)*(x^2+1)). (End)
Comments