cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088225 Solutions to x^n == 7 (mod 11).

Original entry on oeis.org

2, 6, 7, 8, 13, 17, 18, 19, 24, 28, 29, 30, 35, 39, 40, 41, 46, 50, 51, 52, 57, 61, 62, 63, 68, 72, 73, 74, 79, 83, 84, 85, 90, 94, 95, 96, 101, 105, 106, 107, 112, 116, 117, 118, 123, 127, 128, 129, 134, 138, 139, 140, 145, 149, 150, 151, 156, 160, 161, 162, 167, 171
Offset: 1

Views

Author

Cino Hilliard, Nov 03 2003

Keywords

Comments

Also, numbers congruent to {2, 6, 7, 8} mod 11. - Bruno Berselli, Jan 20 2016

Examples

			2^7 - 7 = 121 = 11*11. Thus 2 is in the sequence.
13^7 - 7 = 11*5704410. Thus 13 is in the sequence.
		

References

  • E. Grosswald, Topics From The Theory of Numbers, 1966, pp. 62-63.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{2,6,7,8,13},70] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    conxkmap(a,p,n) = { for(x=1,n, for(j=1,n, y=x^j-a; if(y%p==0,print1(x","); break) ) ) }
    
  • PARI
    a(n) = (-9 - (-1)^n - (7-I)*(-I)^n - (7+I)*I^n + 22*n)/8 \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(3*x^4+x^3+x^2+4*x+2)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Oct 16 2015

Formula

a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. - Harvey P. Dale, Jan 30 2015
From Colin Barker, Oct 16 2015: (Start)
a(n) = (-9 - (-1)^n - (7-i)*(-i)^n - (7+i)*i^n + 22*n)/8, where i=sqrt(-1).
G.f.: x*(3*x^4+x^3+x^2+4*x+2) / ((x-1)^2*(x+1)*(x^2+1)). (End)