A088227 Solutions x to x^n == 7 mod 13.
2, 6, 7, 11, 15, 19, 20, 24, 28, 32, 33, 37, 41, 45, 46, 50, 54, 58, 59, 63, 67, 71, 72, 76, 80, 84, 85, 89, 93, 97, 98, 102, 106, 110, 111, 115, 119, 123, 124, 128, 132, 136, 137, 141, 145, 149, 150, 154, 158, 162, 163, 167, 171, 175, 176, 180, 184, 188, 189, 193
Offset: 1
Examples
2^11 - 7 = 2041 = 11*157. Thus 2 is in the sequence.
References
- E. Grosswald, Topics From The Theory of Numbers, 1966, pp. 62-63.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[2,6,7,11,15]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Dec 02 2016
-
Mathematica
LinearRecurrence[{1, 0, 0, 1, -1},{2, 6, 7, 11, 15},60] (* Ray Chandler, Aug 25 2015 *)
-
PARI
conxkmap(a,p,n) = { for(x=1,n, for(j=1,n, y=x^j-a; if(y%p==0,print1(x","); break) ) ) }
Formula
G.f.: x*(2 + 4*x + x^2 + 4*x^3 + 2*x^4)/(1 - x - x^4 + x^5). - Philippe Deléham, Dec 01 2016