A088216
Smallest nonnegative number not expressible as determinant of an n X n matrix with elements 1..n^2.
Original entry on oeis.org
0, 324, 38831, 6773999, 1859163031
Offset: 2
a(2)=0 because the 2 X 2 determinant of a matrix with entries that are permutations of 1,2,3,4 can only assume the values +-2,+-5,+-10.
A088217
Number of distinct values that can be assumed by the determinant of an n X n matrix whose entries are all permutations of the numbers 1..n^2.
Original entry on oeis.org
1, 6, 777, 79455, 13602389, 3722956267
Offset: 1
a(2)=6 because the determinants of the 24 2 X 2 matrices whose entries are all permutations of 1,2,3,4 can only assume the values -10,-5,-2,2,5,10.
-
C See link given in A088238.
-
f[n_] := (p = Permutations[ Table[i, {i, n^2}]]; Length[ Union[ Table[ Det[ Partition[ p[[i]], n]], {i, 1, (n^2)!}]]]) (* Robert G. Wilson v *)
A325900
Numbers less than the maximum possible determinant A085000(6)=1865999570 not occurring as determinant of a 6 X 6 matrix with entries {1,..,36}.
Original entry on oeis.org
1859163031, 1859166733, 1859193211, 1859235497, 1859254067, 1859268659, 1859282869, 1859288597, 1859291519, 1859294309, 1859309245, 1859317037, 1859320819, 1859324083, 1859324501, 1859331797, 1859333683, 1859335879, 1859348273, 1859348639, 1859351059, 1859358869
Offset: 1
Showing 1-3 of 3 results.
Comments