cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088269 Palindromic primes that yield a prime when sandwiched between two 1's. (Prefixing and suffixing a 1 on both sides yields another palindromic prime.)

Original entry on oeis.org

3, 5, 131, 383, 797, 11411, 16061, 16361, 19391, 33533, 36263, 73037, 75557, 79397, 1074701, 1126211, 1145411, 1175711, 1221221, 1243421, 1287821, 1303031, 1311131, 1328231, 1363631, 1489841, 1579751, 1600061, 1707071, 1748471
Offset: 1

Views

Author

Amarnath Murthy, Sep 28 2003

Keywords

Comments

There are two 1-digit terms, three 3-digit terms, nine 5-digit terms, 93 7-digit terms, 241 9-digit terms and no terms with an even number of digits. - Zak Seidov, Feb 23 2005

Examples

			Take palindromic primes (A002385) and see whether inserting them between two digits '1' again yields a prime:
Insert a(1) = 3 between the digits of 11 to get 131, a prime.
Insert a(2) = 5 between the digits of 11 to get 151, a prime.
Inserting 11 between two '1's yields 1111 = 11 * 101, not a prime.
Insert a(3) = 131 between the digits of 11 to get 11311, a prime.
Insert a(10) = 33533 between the digits of 11 to get 1335331, a prime, etc.
797 is a term as 17971 is also a prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n] && Reverse[IntegerDigits[n]] == IntegerDigits[n] && PrimeQ[ToExpression["1" <> ToString[n*10+1]]], Print[n]], {n, 1, 2*10^6}] (* Ryan Propper, Jul 09 2005 *)
    palsQ[n_]:=Module[{idn=IntegerDigits[n],idn1},idn1=Join[{1},idn,{1}]; idn==Reverse[idn]&&idn1==Reverse[idn1]&&PrimeQ[FromDigits[idn1]]]; Select[Prime[Range[150000]],palsQ] (* Harvey P. Dale, Jan 04 2012 *)
  • PARI
    is_A088269(n)={isprime(n)&&(n=digits(n))==Vecrev(n)&&isprime(fromdigits(concat([1,n,1])))} \\ M. F. Hasler, Nov 19 2018

Extensions

a(6)-a(30) from Ryan Propper, Jul 09 2005
Entry revised by N. J. A. Sloane, Apr 29 2007
Edited by M. F. Hasler, Nov 19 2018