A088301 a(n) = p(n)/p(n-1), where p(n) = ( floor(n*log(n)) / Product_{j=2..pi(floor(n*log(n)))} prime(j) )!.
1, 2, 4, 48, 90, 12, 3360, 18, 9240, 15600, 756, 31680, 42840, 59280, 1848, 99360, 6497400, 2970, 185136, 234360, 18670080, 347760, 421800, 480480, 557928, 55965360, 70073640, 857280, 98960400, 1157520, 11880, 162983520, 190578024
Offset: 2
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Programs
-
Magma
m:=50; b:= [ #PrimesUpTo(n): n in [1..2+Floor(2*m*Log(2*m))] ]; f:= func< n | Factorial( Floor(n*Log(n)) )/(&*[ NthPrime(j): j in [2..b[Floor(n*Log(n))]] ]) >; A088301:= func< n | n le 3 select n-1 else f(n)/f(n-1) >; [A088301(n): n in [2..m]]; // G. C. Greubel, Dec 18 2022
-
Mathematica
p[n_]:=Factorial[Floor[n*Log[n]]]/ Product[Prime[i], {i, 2, PrimePi[Floor[n*Log[n]]]}]; Table[p[n]/p[n-1], {n,2,50}]
-
SageMath
def p(n): return factorial( floor(n*log(n)) )/product(nth_prime(j) for j in (2..prime_pi(floor(n*log(n))))) def A088301(n): return p(n)/p(n-1) [A088301(n) for n in range(2,50)] # G. C. Greubel, Dec 18 2022
Formula
a(n) = p(n)/p(n-1), where p(n) = ( floor(n*log(n)) / Product_{j=2..pi(floor(n*log(n)))} prime(j) )!.
Extensions
Edited by G. C. Greubel, Dec 18 2022