cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088301 a(n) = p(n)/p(n-1), where p(n) = ( floor(n*log(n)) / Product_{j=2..pi(floor(n*log(n)))} prime(j) )!.

Original entry on oeis.org

1, 2, 4, 48, 90, 12, 3360, 18, 9240, 15600, 756, 31680, 42840, 59280, 1848, 99360, 6497400, 2970, 185136, 234360, 18670080, 347760, 421800, 480480, 557928, 55965360, 70073640, 857280, 98960400, 1157520, 11880, 162983520, 190578024
Offset: 2

Views

Author

Roger L. Bagula, Nov 04 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=50;
    b:= [ #PrimesUpTo(n): n in [1..2+Floor(2*m*Log(2*m))] ];
    f:= func< n | Factorial( Floor(n*Log(n)) )/(&*[ NthPrime(j): j in [2..b[Floor(n*Log(n))]] ]) >;
    A088301:= func< n | n le 3 select n-1 else f(n)/f(n-1) >;
    [A088301(n): n in [2..m]]; // G. C. Greubel, Dec 18 2022
    
  • Mathematica
    p[n_]:=Factorial[Floor[n*Log[n]]]/ Product[Prime[i], {i, 2, PrimePi[Floor[n*Log[n]]]}];
    Table[p[n]/p[n-1], {n,2,50}]
  • SageMath
    def p(n): return factorial( floor(n*log(n)) )/product(nth_prime(j) for j in (2..prime_pi(floor(n*log(n)))))
    def A088301(n): return p(n)/p(n-1)
    [A088301(n) for n in range(2,50)] # G. C. Greubel, Dec 18 2022

Formula

a(n) = p(n)/p(n-1), where p(n) = ( floor(n*log(n)) / Product_{j=2..pi(floor(n*log(n)))} prime(j) )!.

Extensions

Edited by G. C. Greubel, Dec 18 2022