cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088316 a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13.

Original entry on oeis.org

2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159, 9557420359075824703, 124977351368017457298, 1634262988143302769577
Offset: 0

Views

Author

Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Comments

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{13,1}, {2,13}, 31] (* Stefano Spezia, Sep 20 2022 *)
  • SageMath
    A088316=BinaryRecurrenceSequence(13,1,2,13)
    [A088316(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ((13+sqrt(173))/2)^n + ((13-sqrt(173))/2)^n.
Lim_{n -> oo} a(n+1)/a(n) = (13 + sqrt(173))/2.
Lim_{n -> oo} a(n)/a(n+1) = 2/(13+sqrt(173)).
G.f.: (2-13*x)/(1-13*x-x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2*n+1) = 13*A097845(n).
a(3*n+1) = A041318(5n), a(3n+2) = A041318(5n+3), a(3n+3) = 2*A041318(5n+4).
Limit_{k->oo} a(n+k)/a(k) = (A088316(n) + A140455(n)*sqrt(173))/2.
Limit_{n->oo} A088316(n)/A140455(n) = sqrt(173). (End)