A088316 a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13.
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159, 9557420359075824703, 124977351368017457298, 1634262988143302769577
Offset: 0
Links
Programs
-
Magma
I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
-
Mathematica
LinearRecurrence[{13,1}, {2,13}, 31] (* Stefano Spezia, Sep 20 2022 *)
-
SageMath
A088316=BinaryRecurrenceSequence(13,1,2,13) [A088316(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
Formula
a(n) = ((13+sqrt(173))/2)^n + ((13-sqrt(173))/2)^n.
Lim_{n -> oo} a(n+1)/a(n) = (13 + sqrt(173))/2.
Lim_{n -> oo} a(n)/a(n+1) = 2/(13+sqrt(173)).
G.f.: (2-13*x)/(1-13*x-x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2*n+1) = 13*A097845(n).
Comments