cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086927 a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 10.

Original entry on oeis.org

2, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, 1125513053602, 11366578291130, 114791295964902, 1159279537940150, 11707586675366402, 118235146291604170
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003

Keywords

Comments

a(n+1)/a(n) converges to (5+sqrt(26)) = 10.099019...
Lim a(n)/a(n+1) as n approaches infinity = 0.099019... = 1/(5+sqrt(26)) = (sqrt(26)-5).

Examples

			a(4) = 10402 = 10*a(3) + a(2) = 10*1030 + 102 = (5+sqrt(26))^4 + (5-sqrt(26))^4 =  10401.999903 + 0.000097 = 10402.
		

References

  • Stefano Arnone, C Falcolini, F Moauro, M Siccardi, On Numbers in Different Bases: Symmetries and a Conjecture, Experimental Mathematics, Vol 26 2016, pp 197-209; http://dx.doi.org/10.1080/10586458.2016.1149125

Crossrefs

Cf. A036336.

Programs

  • Magma
    I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 10, a[n] == 10 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

Formula

a(n) = (5+sqrt(26))^n + (5-sqrt(26))^n.
G.f.: (2-10*x)/(1-10*x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 2*A088320(n). - R. J. Mathar, Feb 06 2020

Extensions

More terms from Jon E. Schoenfield, May 15 2010

A089926 a(n) = 12*a(n-1) + a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).

Crossrefs

Essentially the same as A041060.

Formula

E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
Showing 1-2 of 2 results.