cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088325 Piet Hut's "coat-hanger" sequence: unlabeled forests of rooted trees with n edges, where there can be any number of components, the outdegree of each node is <= 2 and the symmetric group acts on the components.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 34, 71, 153, 332, 730, 1617, 3620, 8148, 18473, 42097, 96420, 221770, 512133, 1186712, 2758707, 6431395, 15033320, 35224825, 82720273, 194655030, 458931973, 1083926784, 2564305754, 6075896220, 14417163975, 34256236039, 81499535281, 194130771581
Offset: 0

Views

Author

N. J. A. Sloane, Nov 06 2003

Keywords

Comments

The coat-hangers hang on a single rod and each coat-hanger may have 0, 1 or 2 coat-hangers hanging from it. There are n coat-hangers.
Arises when studying number of different configurations possible in a multiple star system.

Examples

			The eight possibilities with 4 edges are:
.||||..|||..|.|..||..||...|....|...|.
.......|.../.\...|...||../.\...|...|.
.................|.......|..../.\..|.
...................................|.
		

Crossrefs

Cf. A001190, A003214. Row sums of A088326.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d+1),
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    b[n_] := b[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2]]] + Sum[b[i]*b[n-i], {i, 1, n/2}]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Formula

G.f.: exp(Sum_{k>=1} B(x^k)/k), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190. - N. J. A. Sloane.
G.f.: 1/Product_{k>0} (1-x^k)^A001190(k+1). - Vladeta Jovovic, May 29 2005

A036658 Number of n-node rooted unlabeled trees with exactly 3 edges at root and otherwise out-degree <= 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 6, 14, 29, 68, 147, 337, 757, 1734, 3953, 9113, 20988, 48645, 112909, 263084, 614201, 1438001, 3373253, 7930660, 18679005, 44075988, 104173194, 246604137, 584620470, 1387879434, 3299067379, 7851736348, 18708682855, 44627133541, 106563177864
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    CI2 := proc(f) (1/2)*(f^2+subs(x=x^2,f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2,f)*f+2*subs(x=x^3,f)); end;
    N := 40: G036658 := series(x^3*CI3(G036656),x,N); A036658 := n->coeff(G036658,x,n);
  • Mathematica
    terms = 35;
    CI3[f_] := (1/3!)*(f^3 + 3*(f /. x -> x^2)*f + 2*(f /. x -> x^3));
    G036656[] = 0; Do[G036656[x] = x + (1/2)*(G036656[x]^2 + G036656[x^2]) + O[x]^terms // Normal, terms];
    G036658[x_] = x^3*CI3[G036656[x] - x] + O[x]^(terms+5);
    Drop[CoefficientList[G036658[x], x], 5] (* Jean-François Alcover, Jan 24 2018, adapted from Maple *)

Formula

Let G036656(x) = g.f. for A036656. G.f.: x^3*cycle_index(S3, G036656), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).

Extensions

Corrected by N. J. A. Sloane, May 03 2000

A305839 Number of unlabeled forests of rooted trees with 2n edges and n connected components, in which the outdegree of each node is <= 2 and the symmetric group acts on the components.

Original entry on oeis.org

1, 1, 3, 6, 15, 32, 77, 172, 405, 930, 2180, 5070, 11914, 27929, 65829, 155202, 367053, 868990, 2061723, 4897502, 11652547, 27757960, 66210042, 158103242, 377957299, 904439542, 2166408422, 5193894809, 12463003846, 29929966312, 71933014935, 173009938416
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Cf. A088326.

Formula

a(n) = A088326(2n,n) = A088326(2n+k,n+k) for k >= 0.
Showing 1-3 of 3 results.