A088335 Number of permutations in the symmetric group S_n such that the size of their centralizer is even.
0, 0, 2, 4, 16, 96, 576, 4320, 31872, 298368, 3052800, 34387200, 404029440, 5339473920, 75893207040, 1139356108800, 18079668633600, 310896849715200, 5654417758617600, 107707364764876800, 2145784566959308800, 45252164164799692800, 1003024255355781120000
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n, i) option remember; `if`(((i+1)/2)^2
n, 0, (i-1)!* b(n-i, i-2)*binomial(n, i)))) end: a:= n-> n!-b(n, n-1+irem(n, 2)): seq(a(n), n=0..30); # Alois P. Heinz, Jan 27 2020 -
Mathematica
b[n_, i_] := b[n, i] = If[((i + 1)/2)^2 < n, 0, If[n == 0, 1, b[n, i - 2] + If[i > n, 0, (i - 1)! b[n - i, i - 2] Binomial[n, i]]]]; a[n_] := n! - b[n, n - 1 + Mod[n, 2]]; a /@ Range[0, 30] (* Jean-François Alcover, Apr 08 2020, after Alois P. Heinz *)
-
PARI
seq(n)={Vec(serlaplace(1/(1-x) - prod(k=1, n, 1+(k%2)*x^k/k + O(x*x^n))), -(n+1))} \\ Andrew Howroyd, Jan 27 2020
Formula
a(n) = n! - A088994(n).
Extensions
a(0)=0 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 27 2020