cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088335 Number of permutations in the symmetric group S_n such that the size of their centralizer is even.

Original entry on oeis.org

0, 0, 2, 4, 16, 96, 576, 4320, 31872, 298368, 3052800, 34387200, 404029440, 5339473920, 75893207040, 1139356108800, 18079668633600, 310896849715200, 5654417758617600, 107707364764876800, 2145784566959308800, 45252164164799692800, 1003024255355781120000
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 07 2003

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> n!-b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 27 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[((i + 1)/2)^2 < n, 0, If[n == 0, 1, b[n, i - 2] + If[i > n, 0, (i - 1)! b[n - i, i - 2] Binomial[n, i]]]];
    a[n_] := n! - b[n, n - 1 + Mod[n, 2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 08 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={Vec(serlaplace(1/(1-x) - prod(k=1, n, 1+(k%2)*x^k/k + O(x*x^n))), -(n+1))} \\ Andrew Howroyd, Jan 27 2020

Formula

a(n) = n! - A088994(n).

Extensions

a(0)=0 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 27 2020