A088358 a(n) equals sum of first n terms of A(x)^n for n>=1, with a(0)=1.
1, 1, 3, 16, 127, 1321, 16680, 244518, 4049199, 74404069, 1498276873, 32764372213, 772675039936, 19541627299052, 527590805816280, 15146369004674536, 460804123171138079, 14811876349937896743, 501663013214822053815, 17858867621856721343253, 666744417234185576463077
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 127*x^4 + 1321*x^5 + 16680*x^6 +... The coefficients in A(x)^n begin: n=1: [1, 1, 3, 16, 127, 1321, 16680, 244518, 4049199, ...]; n=2: [1, 2, 7, 38, 295, 2992, 37020, 534386, 8745915, ...]; n=3: [1, 3, 12, 67, 513, 5088, 61716, 877053, 14181891, ...]; n=4: [1, 4, 18, 104, 791, 7696, 91582, 1281160, 20462071, ...]; n=5: [1, 5, 25, 150, 1140, 10916, 127565, 1756710, 27706465, ...]; n=6: [1, 6, 33, 206, 1572, 14862, 170761, 2315256, 36052245, ...]; n=7: [1, 7, 42, 273, 2100, 19663, 222432, 2970108, 45656093, ...]; n=8: [1, 8, 52, 352, 2738, 25464, 284024, 3736560, 56696823, ...]; n=9: [1, 9, 63, 444, 3501, 32427, 357186, 4632138, 69378300, ...]; ... where the initial terms are derived from the above coefficients like so: a(1) = 1 = 1; a(2) = 1 + 2 = 3; a(3) = 1 + 3 + 12 = 16; a(4) = 1 + 4 + 18 + 104 = 127; a(5) = 1 + 5 + 25 + 150 + 1140 = 1321; a(6) = 1 + 6 + 33 + 206 + 1572 + 14862 = 16680; ... RELATED EXPANSIONS. The series B(x) = Series_Reversion(x/A(x)) begins: B(x) = x + x^2 + 4*x^3 + 26*x^4 + 228*x^5 + 2477*x^6 + 31776*x^7 +... such that A(x) = 1 + x*B'(x)/(1 - B(x)); also, B(x) = Sum_{n>=1} b(n)*x^n where b(n) = [x^(n-1)] A(x)^n/n for n>=1: [1/1, 2/2, 12/3, 104/4, 1140/5, 14862/6, 222432/7, 3736560/8, ...].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400
Crossrefs
Cf. A233436.
Programs
-
PARI
{a(n)=local(A); if(n<2,n>=0,A=1+x; for(i=2,n,A+=x^i*subst(Pol((A+O(x^i))^i),x,1)); polcoeff(A,n))} for(n=0,25,print1(a(n),", "))
-
PARI
/* A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x: */ {a(n)=local(A=1+x);for(i=1,n,B=serreverse(x/A+x*O(x^n));A=1+x*deriv(B)/(1-B));polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
Formula
G.f. satisfies: A(x) = 1 + x*B'(x)/(1 - B(x)) where B(x/A(x)) = x. - Paul D. Hanna, Nov 01 2013
a(n) ~ c * n! * n^alpha / LambertW(1)^n, where alpha = (1 + 3*LambertW(1))/(1 + 1/LambertW(1)) and c = 0.192874788982750074134074506494559... - Vaclav Kotesovec, Sep 13 2024