cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358450 Decimal expansion of 2*EllipticK(i) - EllipticE(i), reciprocal of A088375.

Original entry on oeis.org

7, 1, 1, 9, 5, 8, 6, 5, 9, 7, 7, 8, 2, 6, 3, 8, 0, 1, 5, 1, 2, 4, 5, 8, 5, 4, 8, 8, 0, 5, 3, 9, 7, 7, 6, 7, 7, 2, 7, 7, 7, 1, 1, 4, 4, 1, 0, 7, 9, 8, 5, 8, 0, 2, 2, 7, 6, 5, 7, 3, 3, 7, 5, 4, 2, 7, 1, 9, 2, 6, 8, 6, 4, 6, 3, 2, 4, 9, 2, 8, 9, 6, 9, 7, 2, 0
Offset: 0

Views

Author

Peter Luschny, Nov 19 2022

Keywords

Examples

			0.7119586597782638015124585488053977677277711441...
		

Crossrefs

Cf. A088375.

Programs

  • Maple
    Digits := 100: a := sqrt(2)*GAMMA(5/4)^2: b := Pi/4: evalf((a/b - b/a)*b^(1/2), Digits)*10^90: ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    With[{a = Sqrt[2]*Gamma[5/4]^2, b = Pi/4}, RealDigits[(a/b - b/a)*b^(1/2), 10, 120][[1]]] (* Amiram Eldar, Nov 19 2022 *)
  • PARI
    2*ellK(I) - ellE(I) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (a/b - b/a)*b^(1/2), where a = sqrt(2)*Gamma(5/4)^2 and b = Pi/4.
Equals sqrt(2) * (EllipticK(sqrt(2)/2) - EllipticE(sqrt(2)/2)).
Equals Integral_{x=0..Pi/2} cos(x)^2 / sqrt(1 + sin(x)^2).

A088373 Decimal expansion of a constant related to the postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

8, 1, 2, 5, 5, 7, 8, 5, 8, 8, 2, 1, 4, 7, 2, 4, 4, 2, 3, 1, 8, 5, 9, 3, 4, 9, 4, 6, 1, 2, 4, 7, 8, 0, 5, 2, 5, 4, 9, 2, 9, 5, 2, 9, 8, 8, 0, 4, 9, 7, 1, 8, 0, 8, 7, 1, 0, 6, 6, 7, 2, 5, 6, 8, 5, 1, 6, 7, 2, 0, 9, 8, 3, 1, 6, 2, 1, 7, 5, 7, 3, 6, 8, 1, 2, 0, 1, 3, 6, 0, 8, 5, 5, 7, 0, 1, 1, 2, 1, 3, 7, 8
Offset: 0

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			0.8125578588...
		

Crossrefs

Programs

  • Mathematica
    psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[x0, 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)

A088374 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

1, 4, 0, 4, 9, 0, 9, 1, 3, 2, 7, 3, 5, 7, 9, 5, 5, 3, 5, 5, 2, 5, 4, 4, 8, 1, 5, 0, 6, 1, 4, 6, 5, 4, 3, 4, 2, 7, 8, 1, 3, 4, 7, 6, 8, 0, 1, 8, 4, 1, 0, 8, 9, 5, 0, 5, 6, 8, 1, 1, 1, 6, 4, 1, 0, 6, 4, 9, 2, 8, 5, 4, 2, 9, 1, 8, 8, 7, 5, 4, 1, 5, 1, 1, 5, 2, 3, 4, 6, 0, 5, 2, 7, 2, 4, 6, 6, 8, 3, 7, 2, 6
Offset: 1

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			1.4049091327357955...
		

Crossrefs

Programs

  • Mathematica
    psi[x_] := (Sqrt[1 - x^2]*(EllipticE[-x^2/(1 - x^2)] - EllipticK[-x^2/(1 - x^2)]))/x; x0 = x /. FindRoot[psi[x] == 1/8*Pi*(x + 1), {x, 1/2}, WorkingPrecision -> 110]; RealDigits[8/(Pi*(x0 + 1)), 10, 102] // First (* Jean-François Alcover, Feb 06 2013 *)
Showing 1-3 of 3 results.