A088438 A chaotic Cantor integer type product set of the factorial function that trifurcates.
2, 6, 4, 7, 24, 35, 8, 18, 70, 88, 12, 29, 140, 165, 16, 40, 234, 266, 20, 52, 352, 391, 24, 64, 494, 540, 28, 76, 660, 713, 32, 88, 850, 910, 36, 99, 1064, 1131, 40, 111, 1302, 1376, 44, 123, 1564, 1645, 48, 135, 1850, 1938, 52, 147, 2160, 2255, 56, 159, 2494
Offset: 0
Crossrefs
Cf. A088140.
Programs
-
Mathematica
(* factorial based function with half interval Cantor hole in the middle*) p[n_]=n!/Product[i, {i, n-Floor[n/4], n-Floor[3*n/4]}] digits=200 a0=Table[Floor[p[n]/p[n-1]], {n, 2, digits}]
Formula
P[n]=n!/Product[i, {i, n-Floor[n/4], n-Floor[3*n/4]}] a(n) = Floor[P[n]/P[n-1]]
Comments