cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088441 a(n) = n if n == 0 (mod 3), a(n) = 1 if n == 2 (mod 3), otherwise a(n) = floor((n-2)/2).

Original entry on oeis.org

1, 3, 1, 1, 6, 2, 1, 9, 4, 1, 12, 5, 1, 15, 7, 1, 18, 8, 1, 21, 10, 1, 24, 11, 1, 27, 13, 1, 30, 14, 1, 33, 16, 1, 36, 17, 1, 39, 19, 1, 42, 20, 1, 45, 22, 1, 48, 23, 1, 51, 25, 1, 54, 26, 1, 57, 28, 1, 60, 29, 1, 63, 31, 1, 66, 32, 1, 69, 34, 1, 72, 35, 1, 75, 37, 1, 78, 38, 1, 81, 40, 1
Offset: 2

Views

Author

Roger L. Bagula, Nov 09 2003

Keywords

Crossrefs

Programs

  • Magma
    function A088441(n)
      if (n mod 3) eq 0 then return n;
      elif (n mod 3) eq 2 then return 1;
      else return Floor((n-2)/2);
      end if; return A088441;
    end function;
    [A088441(n): n in [2..100]]; // G. C. Greubel, Dec 05 2022
    
  • Mathematica
    p[n_]= n!/Product[i, {i, n -Floor[2*n/3], n -Floor[n/3]}];
    Table[Floor[p[n]/p[n-1]], {n,2,100}]
    (* Second program *)
    a[n_]:= If[Mod[n,3]==0, n, If[Mod[n,3]==2, 1, Floor[(n-2)/2]]];
    Table[a[n], {n,2,100}] (* G. C. Greubel, Dec 05 2022 *)
  • SageMath
    def A088441(n):
        if (n%3)==0: return n
        elif (n%3)==2: return 1
        else: return (n-2)//2
    [A088441(n) for n in range(2,100)] # G. C. Greubel, Dec 05 2022

Formula

a(n) = floor(p(n)/p(n-1)), where p(n) = n!/Product_{j=n-floor(2*n/3)..n-floor(n/3)} j.
From G. C. Greubel, Dec 05 2022: (Start)
a(n) = floor( n*Gamma(n - floor(2*n/3))*Gamma(n - floor((n-1)/3))/(Gamma(n - floor(n/3) + 1)*Gamma(n - floor(2*(n-1)/3) - 1)) ).
a(n) = n if n mod 3 = 0, 1 if n mod 3 = 2, otherwise floor((n-2)/2). (End)

Extensions

Edited by G. C. Greubel, Dec 05 2022