A088453 Decimal expansion of 1/zeta(3).
8, 3, 1, 9, 0, 7, 3, 7, 2, 5, 8, 0, 7, 0, 7, 4, 6, 8, 6, 8, 3, 1, 2, 6, 2, 7, 8, 8, 2, 1, 5, 3, 0, 7, 3, 4, 4, 1, 7, 0, 5, 6, 3, 9, 7, 7, 3, 3, 7, 2, 8, 0, 7, 9, 2, 7, 9, 6, 7, 0, 3, 3, 2, 8, 6, 4, 4, 5, 7, 8, 7, 9, 1, 7, 2, 3, 4, 7, 9, 8, 8, 8, 2, 1, 3, 6, 5, 6, 6, 8, 9, 8, 9, 9, 6, 5, 3, 0, 4, 0, 9, 8
Offset: 0
Examples
0.831907372580707468683126278821530734417...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
Links
- Steven Arno, M. L. Robinson, and Ferell S. Wheeler, On denominators of algebraic numbers and integer polynomials, Journal of Number Theory 57:2 (April 1996), pp. 292-302.
- Eric Weisstein's World of Mathematics, Relatively Prime.
Programs
-
Mathematica
RealDigits[1/Zeta[3],10,120][[1]] (* Harvey P. Dale, May 31 2019 *)
-
Maxima
fpprec : 200$ bfloat( 1/zeta(3))$ bfloat(%); /* Martin Ettl, Oct 15 2012 */
-
PARI
1/zeta(3) \\ Charles R Greathouse IV, Nov 12 2014
Formula
Equals 1/A002117.
From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=1} mu(k)/k^3, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^3). (End)
Extensions
Entry revised by N. J. A. Sloane, Dec 16 2004
Comments