cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088453 Decimal expansion of 1/zeta(3).

Original entry on oeis.org

8, 3, 1, 9, 0, 7, 3, 7, 2, 5, 8, 0, 7, 0, 7, 4, 6, 8, 6, 8, 3, 1, 2, 6, 2, 7, 8, 8, 2, 1, 5, 3, 0, 7, 3, 4, 4, 1, 7, 0, 5, 6, 3, 9, 7, 7, 3, 3, 7, 2, 8, 0, 7, 9, 2, 7, 9, 6, 7, 0, 3, 3, 2, 8, 6, 4, 4, 5, 7, 8, 7, 9, 1, 7, 2, 3, 4, 7, 9, 8, 8, 8, 2, 1, 3, 6, 5, 6, 6, 8, 9, 8, 9, 9, 6, 5, 3, 0, 4, 0, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Sep 30 2003

Keywords

Comments

This is the probability that three randomly chosen integers are relatively prime (see A018805). - Gary McGuire, Dec 13 2004
This is also the probability that a random integer is cubefree. - Eugene Salamin, Dec 13 2004
On the other hand, the probability that three randomly-chosen integers are pairwise relatively prime is given by A065473. - Charles R Greathouse IV, Nov 14 2011
This is also the 'probability' that a random algebraic number's denominator is equal to its leading coefficient, see Arno, Robinson, & Wheeler. - Charles R Greathouse IV, Nov 12 2014
This is the probability that a random point on a cubic lattice is visible from the origin, i.e., there is no other lattice point that lies on the line segment between this point and the origin. - Amiram Eldar, Jul 08 2020

Examples

			0.831907372580707468683126278821530734417...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

Crossrefs

Programs

Formula

Equals 1/A002117.
From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=1} mu(k)/k^3, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^3). (End)

Extensions

Entry revised by N. J. A. Sloane, Dec 16 2004