cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088491 a(n) = floor(p(n)/p(n-1)), where p(n) = n!/(Product_{j=1..floor(n/2)} A004001(j)).

Original entry on oeis.org

2, 3, 4, 5, 3, 7, 4, 9, 3, 11, 3, 13, 3, 15, 4, 17, 3, 19, 3, 21, 3, 23, 3, 25, 3, 27, 3, 29, 3, 31, 4, 33, 3, 35, 3, 37, 3, 39, 3, 41, 3, 43, 3, 45, 3, 47, 3, 49, 3, 51, 3, 53, 3, 55, 3, 57, 3, 59, 3, 61, 3, 63, 4, 65, 3, 67, 3, 69, 3, 71, 3, 73, 3, 75, 3, 77, 3, 79, 3, 81, 3, 83, 3, 85, 3, 87
Offset: 2

Views

Author

Roger L. Bagula, Nov 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Conway[n_]:= Conway[n]= If[n<3, 1, Conway[Conway[n-1]] +Conway[n-Conway[n-1]]];
    f[n_]:= f[n]= Product[Conway[i], {i,Floor[n/2]}];
    a[n_]:= a[n]= Floor[n*f[n-1]/f[n]];
    Table[a[n], {n, 2, 100}] (* modified by G. C. Greubel, Mar 27 2022 *)
  • Sage
    @CachedFunction
    def b(n): # A004001
        if (n<3): return 1
        else: return b(b(n-1)) + b(n-b(n-1))
    def f(n): return product( b(j) for j in (1..(n//2)) )
    def A088491(n): return (n*f(n-1)//f(n))
    [A088491(n) for n in (2..100)] # G. C. Greubel, Mar 27 2022

Formula

a(n) = floor(p(n)/p(n-1)), where p(n) = n!/(Product_{j=1..floor(n/2)} A004001(j)).

Extensions

Edited by G. C. Greubel, Mar 27 2022