A285720 Number of ways to write n as a sum of two unordered squarefree numbers so that their addition in base-2 does not produce carries.
0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 11, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 11, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 7, 0, 0, 0, 13, 0, 0, 0, 3, 0, 0, 0, 9, 0
Offset: 1
Links
Programs
-
Mathematica
Table[Sum[Abs[MoebiusMu[i] MoebiusMu[n - i]] Boole[BitXor[i, n - i] == n], {i, Floor[n/2]}], {n, 120}] (* Michael De Vlieger, May 03 2017 *)
-
Python
from sympy import mobius def a003987(n, i): return i^(n - i) == n def a(n): return sum([abs(mobius(i)*mobius(n - i))*(1*a003987(n, i)) for i in range(1, n//2 + 1)]) print([a(n) for n in range(1,121)]) # Indranil Ghosh, May 02 2017
-
Scheme
(define (A285720 n) (let loop ((k (A013928 n)) (s 0)) (if (or (zero? k) (< (A005117 k) (- n (A005117 k)))) s (loop (- k 1) (+ s (if (and (= 1 (A008966 (- n (A005117 k)))) (zero? (A004198bi (A005117 k) (- n (A005117 k))))) 1 0)))))) ;; Where A004198bi implements bitwise-AND (A004198).
Comments