A088540 Decimal expansion of (4/sqrt(Pi))*exp(-gamma/2)*K where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.
1, 2, 9, 2, 3, 0, 4, 1, 5, 7, 1, 2, 8, 6, 8, 8, 6, 0, 7, 1, 0, 9, 1, 3, 8, 3, 8, 9, 8, 7, 0, 4, 3, 2, 0, 6, 5, 3, 4, 2, 9, 6, 1, 4, 2, 5, 0, 1, 2, 9, 9, 7, 2, 4, 1, 2, 2, 7, 6, 2, 9, 2, 3, 1, 6, 1, 9, 5, 0, 0, 0, 5, 5, 2, 8, 2, 3, 2, 0, 7, 9, 4, 2, 7, 3, 0, 3, 0, 7, 5, 9, 7, 5, 5, 2, 4, 4, 9, 9, 4, 1, 6, 1, 3, 2
Offset: 1
Examples
1.2923041571286886071...
References
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.
Links
- Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 5.
- S. Uchiyama, On some products involving primes, Proc. Amer. Math. Soc. 28 (1971) 629-630; MR 43#3227.
Programs
-
Mathematica
digits = 105; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Sqrt[Pi]*Exp[-EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Jun 04 2014, updated Mar 14 2018 *)
Formula
Equals (4/sqrt(Pi))*exp(-gamma/2)*K = lim_{x->oo} Product_{p prime, p == 1 (mod 4), p <= x} (1 - 1/p).
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments