cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088540 Decimal expansion of (4/sqrt(Pi))*exp(-gamma/2)*K where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.

Original entry on oeis.org

1, 2, 9, 2, 3, 0, 4, 1, 5, 7, 1, 2, 8, 6, 8, 8, 6, 0, 7, 1, 0, 9, 1, 3, 8, 3, 8, 9, 8, 7, 0, 4, 3, 2, 0, 6, 5, 3, 4, 2, 9, 6, 1, 4, 2, 5, 0, 1, 2, 9, 9, 7, 2, 4, 1, 2, 2, 7, 6, 2, 9, 2, 3, 1, 6, 1, 9, 5, 0, 0, 0, 5, 5, 2, 8, 2, 3, 2, 0, 7, 9, 4, 2, 7, 3, 0, 3, 0, 7, 5, 9, 7, 5, 5, 2, 4, 4, 9, 9, 4, 1, 6, 1, 3, 2
Offset: 1

Views

Author

Benoit Cloitre, Nov 16 2003

Keywords

Comments

An illustration of the Chebyshev effect.

Examples

			1.2923041571286886071...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.

Crossrefs

Programs

  • Mathematica
    digits = 105; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Sqrt[Pi]*Exp[-EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Jun 04 2014, updated Mar 14 2018 *)

Formula

Equals (4/sqrt(Pi))*exp(-gamma/2)*K = lim_{x->oo} Product_{p prime, p == 1 (mod 4), p <= x} (1 - 1/p).
Equals 4*A087197*A064533/exp(A155739). - R. J. Mathar, Feb 05 2009

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A125313 Decimal expansion of 2*exp(-gamma).

Original entry on oeis.org

1, 1, 2, 2, 9, 1, 8, 9, 6, 7, 1, 3, 3, 7, 7, 0, 3, 3, 9, 6, 4, 8, 2, 8, 6, 4, 2, 9, 5, 8, 1, 7, 6, 1, 5, 7, 3, 5, 3, 1, 4, 2, 0, 7, 7, 3, 8, 5, 0, 3, 0, 6, 3, 3, 6, 3, 0, 8, 3, 1, 8, 1, 5, 2, 0, 9, 0, 1, 7, 5, 9, 3, 4, 1, 4, 8, 5, 7, 1, 2, 7, 4, 2, 6, 5, 7, 4, 2, 3, 1, 7, 8, 6, 8, 4, 2, 8, 7, 1, 7, 5, 3, 4, 6, 3
Offset: 1

Views

Author

Robert G. Wilson v, Dec 08 2006

Keywords

Examples

			1.12291896713377033964828642958176157353142077385030633630831815209...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3, Landau-Ramanujan constant, p. 100.

Programs

  • Magma
    R:= RealField(100); 2*Exp(-EulerGamma(R)); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[2*Exp[-EulerGamma], 10, 111][[1]]
  • PARI
    default(realprecision, 100); 2*exp(-Euler) \\ G. C. Greubel, Sep 05 2018
    

Formula

Equals 2*A080130, 2*A001113^(-A001620) and 2/A073004 = 2/A068985^A001620.
Equals A088540 * A088541. - Jean-François Alcover, Jun 04 2014
Equals exp(A002162 - A001620). - John W. Nicholson, Apr 03 2015

A243377 Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 1 modulo 4} (1 + 1/p).

Original entry on oeis.org

7, 3, 2, 6, 4, 9, 8, 1, 9, 2, 8, 3, 8, 3, 2, 6, 1, 3, 6, 2, 0, 3, 0, 5, 8, 2, 3, 1, 1, 7, 6, 8, 3, 6, 8, 7, 3, 6, 3, 1, 6, 9, 9, 4, 4, 1, 9, 9, 4, 6, 3, 2, 9, 3, 4, 5, 0, 6, 0, 7, 7, 7, 2, 9, 6, 3, 8, 3, 4, 3, 1, 9, 3, 3, 1, 8, 7, 7, 1, 9, 0, 6, 4, 0, 4, 9, 1, 5, 5, 2, 9, 2, 7, 7, 9, 6, 8, 9, 1, 4, 6, 7, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			0.732649819283832613620305823117683687363...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 103; LandauRamanujanK =  1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Pi^(3/2)*Exp[EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)

Formula

Equals (4/Pi^(3/2))*exp(gamma/2)*K, where gamma is the Euler-Mascheroni constant and K the Landau-Ramanujan constant.
Equals 2/(Pi*A088541) = A060294/A088541. - Amiram Eldar, Nov 16 2021
Showing 1-3 of 3 results.