cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088544 Scale factor by which primitive Pythagorean triangle {x=A088509(n), y=A088510(n), z=A088511(n)} needs be enlarged in order to circumscribe the smallest integral square having a side on the hypotenuse.

Original entry on oeis.org

37, 229, 409, 793, 1261, 2041, 1789, 4381, 5233, 4069, 8317, 6073, 14449, 7969, 12181, 9997, 11041, 23473, 14089, 24457, 17341, 36181, 20773, 53461, 29341, 44269, 28009, 38509, 76297, 35869, 44257, 74209, 42841, 105769, 50137, 65701, 53209
Offset: 1

Views

Author

Lekraj Beedassy, Nov 17 2003

Keywords

Comments

Such an inscribed square has side x*y*z = A063011(n).
Also the radius squared of the Conway circle of a primitive Pythagorean triangle, sorted on product of sides. - Frank M Jackson, Nov 04 2023

References

  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 21, "The Square on the Hypotenuse", pp. 7; 79-80, Dolciani Math. Exp. No. 18, MAA, 1996.

Crossrefs

Programs

  • Mathematica
    lst={}; k=25; Do[If[GCD[m, n]==1&&OddQ[m+n], AppendTo[lst, {2m*n(m^4-n^4), m^2(m+n)^2+n^2(m-n)^2}]], {m, 1, k}, {n, 1, m}]; lst=Sort@lst; Table[lst[[n]][[2]], {n, 1, 100}] (* Frank M Jackson, Nov 04 2023 *)

Formula

a(n) = x*y + z^2.
a(n) = s^2 + r^2, where s is the semiperimeter and r is the inradius of triangle (x, y, z).

Extensions

More terms from Max Alekseyev, May 30 2009