cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088559 Decimal expansion of R^2 where R^2 is the real root of x^3 + 2*x^2 + x - 1 = 0.

Original entry on oeis.org

4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 0

Views

Author

Benoit Cloitre, Nov 19 2003

Keywords

Comments

Arise in a study of AGM (arithmetic-geometric mean) and HGM (harmonic-geometric mean) - like sequences. Let u(k+1)=sqrt(u(k)*v(k)); v(k+1)=v(k)+u(k) and r(k+1)=sqrt(r(k)*s(k)); s(k+1)=1/(1/r(k)+1/s(k)). Then for any positive initial values u(0),v(0),r(0),s(0) limit k-->oo u(k)/v(k)= limit k-->oo s(k)/r(k)=R^2.
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r0 - 2/3 where r0 is the real root of y^3 - (1/3)*y - 29/27.
The other roots of x^3 + 2*x^2 + x - 1 are (-2 + w1*((29 + 3*sqrt(93))/2)^(1/3) + w2*((29 - 3*sqrt(93))/2)^(1/3))/3 = -1.2327856159... + 0.7925519925...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (-2 - cosh((1/3)*arccosh(29/2)) + sqrt(3)*sinh((1/3)*arccosh(29/2))*i)/3, and its complex conjugate. (End)

Examples

			0.465571231876768026656731225219939108025577568472285701643183111249262996685...
		

Crossrefs

Programs

  • Mathematica
    Root[x^3 + 2x^2 + x - 1, 1] // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=10*solve(x=0, 1, x^3 + 2*x^2 + x - 1); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b088559.txt", n, " ", d)); \\ Harry J. Smith, Jun 21 2009
    
  • PARI
    polrootsreal(x^3 + 2*x^2 + x - 1)[1] \\ Charles R Greathouse IV, Mar 03 2016

Formula

R^2=0.46557123187676... 1+R^2=1.46557123187676... = A092526 constant.
From Vaclav Kotesovec, Dec 18 2014: (Start)
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) - 2/3.
Equals 2*cos(arccos(29/2)/3)/3 - 2/3.
Equals A092526 - 1.
(End)
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 + 3*sqrt(93))/2)^(-1/3))/3.
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 - 3*sqrt(93))/2)^(1/3))/3.
Also with hperbolic cosh and arccosh instead of cos and arccos above.
(End)