A088559 Decimal expansion of R^2 where R^2 is the real root of x^3 + 2*x^2 + x - 1 = 0.
4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 0
Examples
0.465571231876768026656731225219939108025577568472285701643183111249262996685...
Links
Programs
-
Mathematica
Root[x^3 + 2x^2 + x - 1, 1] // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
-
PARI
allocatemem(932245000); default(realprecision, 20080); x=10*solve(x=0, 1, x^3 + 2*x^2 + x - 1); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b088559.txt", n, " ", d)); \\ Harry J. Smith, Jun 21 2009
-
PARI
polrootsreal(x^3 + 2*x^2 + x - 1)[1] \\ Charles R Greathouse IV, Mar 03 2016
Formula
R^2=0.46557123187676... 1+R^2=1.46557123187676... = A092526 constant.
From Vaclav Kotesovec, Dec 18 2014: (Start)
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) - 2/3.
Equals 2*cos(arccos(29/2)/3)/3 - 2/3.
Equals A092526 - 1.
(End)
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 + 3*sqrt(93))/2)^(-1/3))/3.
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 - 3*sqrt(93))/2)^(1/3))/3.
Also with hperbolic cosh and arccosh instead of cos and arccos above.
(End)
Comments