cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088578 a(n) = n*x^n + (n-1)*x^(n-1) + . . . + x + 1 for x=2.

Original entry on oeis.org

1, 3, 11, 35, 99, 259, 643, 1539, 3587, 8195, 18435, 40963, 90115, 196611, 425987, 917507, 1966083, 4194307, 8912899, 18874371, 39845891, 83886083, 176160771, 369098755, 771751939, 1610612739, 3355443203, 6979321859, 14495514627, 30064771075, 62277025795
Offset: 0

Views

Author

Cino Hilliard, Nov 20 2003

Keywords

Comments

For x=1 this is A000124.
Equals row sums of triangle A144332. Left border of A144332 = A000124. - Gary W. Adamson, Sep 18 2008

Examples

			Sum of reciprocals = 1.469480896985753544533086291..
		

Crossrefs

Cf. A000124.
Cf. A144332.

Programs

  • Magma
    I:=[1,3,11]; [n le 3 select I[n] else 5*Self(n-1)-8*Self(n-2)+4*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jun 14 2015
  • Mathematica
    LinearRecurrence[{5,-8,4},{1,3,11},40] (* Harvey P. Dale, Dec 22 2013 *)
    Table[(n - 1) 2^(n + 1) + 3, {n, 0, 30}] (* Vincenzo Librandi, Jun 14 2015 *)
  • PARI
    trajpolypn(n1,k) = { s=0; for(x1=1,n1, y1 = polypn2(k,x1); print1(y1","); s+=1.0/y1; ); print(); print(s) } polypn2(n,p) = { x=n; y=1; for(m=1,p, y=y+m*x^m; ); return(y) }
    
  • PARI
    Vec((1-2*x+4*x^2)/((1-x)*(1-2*x)^2) + O(x^50)) \\ Colin Barker, Jun 13 2015
    

Formula

a(n) = (n-1) * 2^(n+1) + 3.
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - Colin Barker, Apr 02 2012
G.f.: (1-2*x+4*x^2)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 02 2012